Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subsaluni.1 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
subsaluni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) | ||
Assertion | subsaluni | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ↾t 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsaluni.1 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
2 | subsaluni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) | |
3 | 1 2 | restuni4 | ⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐴 ) = 𝐴 ) |
4 | 3 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ∪ ( 𝑆 ↾t 𝐴 ) ) |
5 | 1 | uniexd | ⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
6 | 5 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 | eqid | ⊢ ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t 𝐴 ) | |
8 | 1 6 7 | subsalsal | ⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) ∈ SAlg ) |
9 | 8 | salunid | ⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐴 ) ∈ ( 𝑆 ↾t 𝐴 ) ) |
10 | 4 9 | eqeltrd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ↾t 𝐴 ) ) |