Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subsaluni.1 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
| subsaluni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) | ||
| Assertion | subsaluni | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ↾t 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subsaluni.1 | ⊢ ( 𝜑 → 𝑆 ∈ SAlg ) | |
| 2 | subsaluni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) | |
| 3 | 1 2 | restuni4 | ⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐴 ) = 𝐴 ) | 
| 4 | 3 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ∪ ( 𝑆 ↾t 𝐴 ) ) | 
| 5 | 1 | uniexd | ⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) | 
| 6 | 5 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) | 
| 7 | eqid | ⊢ ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t 𝐴 ) | |
| 8 | 1 6 7 | subsalsal | ⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) ∈ SAlg ) | 
| 9 | 8 | salunid | ⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐴 ) ∈ ( 𝑆 ↾t 𝐴 ) ) | 
| 10 | 4 9 | eqeltrd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ↾t 𝐴 ) ) |