Metamath Proof Explorer


Theorem subsaluni

Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaluni.1 ( 𝜑𝑆 ∈ SAlg )
subsaluni.2 ( 𝜑𝐴 𝑆 )
Assertion subsaluni ( 𝜑𝐴 ∈ ( 𝑆t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 subsaluni.1 ( 𝜑𝑆 ∈ SAlg )
2 subsaluni.2 ( 𝜑𝐴 𝑆 )
3 1 2 restuni4 ( 𝜑 ( 𝑆t 𝐴 ) = 𝐴 )
4 3 eqcomd ( 𝜑𝐴 = ( 𝑆t 𝐴 ) )
5 1 uniexd ( 𝜑 𝑆 ∈ V )
6 5 2 ssexd ( 𝜑𝐴 ∈ V )
7 eqid ( 𝑆t 𝐴 ) = ( 𝑆t 𝐴 )
8 1 6 7 subsalsal ( 𝜑 → ( 𝑆t 𝐴 ) ∈ SAlg )
9 8 salunid ( 𝜑 ( 𝑆t 𝐴 ) ∈ ( 𝑆t 𝐴 ) )
10 4 9 eqeltrd ( 𝜑𝐴 ∈ ( 𝑆t 𝐴 ) )