Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subsaluni.1 | |- ( ph -> S e. SAlg ) |
|
subsaluni.2 | |- ( ph -> A C_ U. S ) |
||
Assertion | subsaluni | |- ( ph -> A e. ( S |`t A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsaluni.1 | |- ( ph -> S e. SAlg ) |
|
2 | subsaluni.2 | |- ( ph -> A C_ U. S ) |
|
3 | 1 2 | restuni4 | |- ( ph -> U. ( S |`t A ) = A ) |
4 | 3 | eqcomd | |- ( ph -> A = U. ( S |`t A ) ) |
5 | 1 | uniexd | |- ( ph -> U. S e. _V ) |
6 | 5 2 | ssexd | |- ( ph -> A e. _V ) |
7 | eqid | |- ( S |`t A ) = ( S |`t A ) |
|
8 | 1 6 7 | subsalsal | |- ( ph -> ( S |`t A ) e. SAlg ) |
9 | 8 | salunid | |- ( ph -> U. ( S |`t A ) e. ( S |`t A ) ) |
10 | 4 9 | eqeltrd | |- ( ph -> A e. ( S |`t A ) ) |