Metamath Proof Explorer


Theorem subsaluni

Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaluni.1
|- ( ph -> S e. SAlg )
subsaluni.2
|- ( ph -> A C_ U. S )
Assertion subsaluni
|- ( ph -> A e. ( S |`t A ) )

Proof

Step Hyp Ref Expression
1 subsaluni.1
 |-  ( ph -> S e. SAlg )
2 subsaluni.2
 |-  ( ph -> A C_ U. S )
3 1 2 restuni4
 |-  ( ph -> U. ( S |`t A ) = A )
4 3 eqcomd
 |-  ( ph -> A = U. ( S |`t A ) )
5 1 uniexd
 |-  ( ph -> U. S e. _V )
6 5 2 ssexd
 |-  ( ph -> A e. _V )
7 eqid
 |-  ( S |`t A ) = ( S |`t A )
8 1 6 7 subsalsal
 |-  ( ph -> ( S |`t A ) e. SAlg )
9 8 salunid
 |-  ( ph -> U. ( S |`t A ) e. ( S |`t A ) )
10 4 9 eqeltrd
 |-  ( ph -> A e. ( S |`t A ) )