Metamath Proof Explorer


Theorem subsaluni

Description: A set belongs to the subspace sigma-algebra it induces. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses subsaluni.1 φ S SAlg
subsaluni.2 φ A S
Assertion subsaluni φ A S 𝑡 A

Proof

Step Hyp Ref Expression
1 subsaluni.1 φ S SAlg
2 subsaluni.2 φ A S
3 1 2 restuni4 φ S 𝑡 A = A
4 3 eqcomd φ A = S 𝑡 A
5 1 uniexd φ S V
6 5 2 ssexd φ A V
7 eqid S 𝑡 A = S 𝑡 A
8 1 6 7 subsalsal φ S 𝑡 A SAlg
9 8 salunid φ S 𝑡 A S 𝑡 A
10 4 9 eqeltrd φ A S 𝑡 A