Metamath Proof Explorer


Theorem salrestss

Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses salrestss.1 φ S SAlg
salrestss.2 φ E S
Assertion salrestss φ S 𝑡 E S

Proof

Step Hyp Ref Expression
1 salrestss.1 φ S SAlg
2 salrestss.2 φ E S
3 simpr φ x S 𝑡 E x S 𝑡 E
4 1 adantr φ x S 𝑡 E S SAlg
5 2 adantr φ x S 𝑡 E E S
6 elrest S SAlg E S x S 𝑡 E y S x = y E
7 4 5 6 syl2anc φ x S 𝑡 E x S 𝑡 E y S x = y E
8 3 7 mpbid φ x S 𝑡 E y S x = y E
9 simprr φ y S x = y E x = y E
10 1 adantr φ y S S SAlg
11 simpr φ y S y S
12 2 adantr φ y S E S
13 10 11 12 salincld φ y S y E S
14 13 adantrr φ y S x = y E y E S
15 9 14 eqeltrd φ y S x = y E x S
16 15 adantlr φ x S 𝑡 E y S x = y E x S
17 8 16 rexlimddv φ x S 𝑡 E x S
18 17 ssd φ S 𝑡 E S