| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salrestss.1 | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | salrestss.2 | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  𝐸  ∈  𝑆 ) | 
						
							| 6 |  | elrest | ⊢ ( ( 𝑆  ∈  SAlg  ∧  𝐸  ∈  𝑆 )  →  ( 𝑥  ∈  ( 𝑆  ↾t  𝐸 )  ↔  ∃ 𝑦  ∈  𝑆 𝑥  =  ( 𝑦  ∩  𝐸 ) ) ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  ( 𝑥  ∈  ( 𝑆  ↾t  𝐸 )  ↔  ∃ 𝑦  ∈  𝑆 𝑥  =  ( 𝑦  ∩  𝐸 ) ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  ∃ 𝑦  ∈  𝑆 𝑥  =  ( 𝑦  ∩  𝐸 ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑥  =  ( 𝑦  ∩  𝐸 ) ) )  →  𝑥  =  ( 𝑦  ∩  𝐸 ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑆  ∈  SAlg ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑆 ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝐸  ∈  𝑆 ) | 
						
							| 13 | 10 11 12 | salincld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑦  ∩  𝐸 )  ∈  𝑆 ) | 
						
							| 14 | 13 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑥  =  ( 𝑦  ∩  𝐸 ) ) )  →  ( 𝑦  ∩  𝐸 )  ∈  𝑆 ) | 
						
							| 15 | 9 14 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑥  =  ( 𝑦  ∩  𝐸 ) ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  ∧  ( 𝑦  ∈  𝑆  ∧  𝑥  =  ( 𝑦  ∩  𝐸 ) ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 17 | 8 16 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑆  ↾t  𝐸 ) )  →  𝑥  ∈  𝑆 ) | 
						
							| 18 | 17 | ssd | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐸 )  ⊆  𝑆 ) |