Step |
Hyp |
Ref |
Expression |
1 |
|
salrestss.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
salrestss.2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑆 ∈ SAlg ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝐸 ∈ 𝑆 ) |
6 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) |
8 |
3 7
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) |
9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 = ( 𝑦 ∩ 𝐸 ) ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐸 ∈ 𝑆 ) |
13 |
10 11 12
|
salincld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∩ 𝐸 ) ∈ 𝑆 ) |
14 |
13
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → ( 𝑦 ∩ 𝐸 ) ∈ 𝑆 ) |
15 |
9 14
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 ∈ 𝑆 ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 ∈ 𝑆 ) |
17 |
8 16
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑥 ∈ 𝑆 ) |
18 |
17
|
ssd |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐸 ) ⊆ 𝑆 ) |