| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salrestss.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 2 |
|
salrestss.2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑆 ∈ SAlg ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝐸 ∈ 𝑆 ) |
| 6 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → ( 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ↔ ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) |
| 8 |
3 7
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → ∃ 𝑦 ∈ 𝑆 𝑥 = ( 𝑦 ∩ 𝐸 ) ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 = ( 𝑦 ∩ 𝐸 ) ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ∈ SAlg ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐸 ∈ 𝑆 ) |
| 13 |
10 11 12
|
salincld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∩ 𝐸 ) ∈ 𝑆 ) |
| 14 |
13
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → ( 𝑦 ∩ 𝐸 ) ∈ 𝑆 ) |
| 15 |
9 14
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 ∈ 𝑆 ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 = ( 𝑦 ∩ 𝐸 ) ) ) → 𝑥 ∈ 𝑆 ) |
| 17 |
8 16
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ↾t 𝐸 ) ) → 𝑥 ∈ 𝑆 ) |
| 18 |
17
|
ssd |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐸 ) ⊆ 𝑆 ) |