Metamath Proof Explorer


Theorem salrestss

Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses salrestss.1 ( 𝜑𝑆 ∈ SAlg )
salrestss.2 ( 𝜑𝐸𝑆 )
Assertion salrestss ( 𝜑 → ( 𝑆t 𝐸 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 salrestss.1 ( 𝜑𝑆 ∈ SAlg )
2 salrestss.2 ( 𝜑𝐸𝑆 )
3 simpr ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → 𝑥 ∈ ( 𝑆t 𝐸 ) )
4 1 adantr ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → 𝑆 ∈ SAlg )
5 2 adantr ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → 𝐸𝑆 )
6 elrest ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → ( 𝑥 ∈ ( 𝑆t 𝐸 ) ↔ ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐸 ) ) )
7 4 5 6 syl2anc ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → ( 𝑥 ∈ ( 𝑆t 𝐸 ) ↔ ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐸 ) ) )
8 3 7 mpbid ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → ∃ 𝑦𝑆 𝑥 = ( 𝑦𝐸 ) )
9 simprr ( ( 𝜑 ∧ ( 𝑦𝑆𝑥 = ( 𝑦𝐸 ) ) ) → 𝑥 = ( 𝑦𝐸 ) )
10 1 adantr ( ( 𝜑𝑦𝑆 ) → 𝑆 ∈ SAlg )
11 simpr ( ( 𝜑𝑦𝑆 ) → 𝑦𝑆 )
12 2 adantr ( ( 𝜑𝑦𝑆 ) → 𝐸𝑆 )
13 10 11 12 salincld ( ( 𝜑𝑦𝑆 ) → ( 𝑦𝐸 ) ∈ 𝑆 )
14 13 adantrr ( ( 𝜑 ∧ ( 𝑦𝑆𝑥 = ( 𝑦𝐸 ) ) ) → ( 𝑦𝐸 ) ∈ 𝑆 )
15 9 14 eqeltrd ( ( 𝜑 ∧ ( 𝑦𝑆𝑥 = ( 𝑦𝐸 ) ) ) → 𝑥𝑆 )
16 15 adantlr ( ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) ∧ ( 𝑦𝑆𝑥 = ( 𝑦𝐸 ) ) ) → 𝑥𝑆 )
17 8 16 rexlimddv ( ( 𝜑𝑥 ∈ ( 𝑆t 𝐸 ) ) → 𝑥𝑆 )
18 17 ssd ( 𝜑 → ( 𝑆t 𝐸 ) ⊆ 𝑆 )