Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| Assertion | ssd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 3 | 2 1 | ssdf | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |