Metamath Proof Explorer


Theorem salunid

Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis salunid.1
|- ( ph -> S e. SAlg )
Assertion salunid
|- ( ph -> U. S e. S )

Proof

Step Hyp Ref Expression
1 salunid.1
 |-  ( ph -> S e. SAlg )
2 saluni
 |-  ( S e. SAlg -> U. S e. S )
3 1 2 syl
 |-  ( ph -> U. S e. S )