Step |
Hyp |
Ref |
Expression |
1 |
|
subsaliuncl.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
subsaliuncl.2 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
3 |
|
subsaliuncl.3 |
⊢ 𝑇 = ( 𝑆 ↾t 𝐷 ) |
4 |
|
subsaliuncl.4 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑇 ) |
5 |
|
eqid |
⊢ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } |
6 |
5 1
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V ) |
7 |
6
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V ) |
8 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
9 |
8
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ ℕ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ∈ V → ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) Fn ℕ ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) Fn ℕ ) |
11 |
|
nnex |
⊢ ℕ ∈ V |
12 |
|
fnrndomg |
⊢ ( ℕ ∈ V → ( ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) Fn ℕ → ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ℕ ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) Fn ℕ → ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ℕ ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ℕ ) |
15 |
|
nnenom |
⊢ ℕ ≈ ω |
16 |
15
|
a1i |
⊢ ( 𝜑 → ℕ ≈ ω ) |
17 |
|
domentr |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ℕ ∧ ℕ ≈ ω ) → ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ω ) |
18 |
14 16 17
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ≼ ω ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
8
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
21 |
19 20
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
22 |
21
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) → ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
24 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) → 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
25 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ) |
26 |
25 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
27 |
2
|
elexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
28 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐷 ∈ V ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ) ) |
29 |
1 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑛 ) ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ) ) |
31 |
26 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ) |
32 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ) |
33 |
31 32
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ≠ ∅ ) |
34 |
33
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ≠ ∅ ) |
35 |
24 34
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) → 𝑦 ≠ ∅ ) |
36 |
35
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ → ( 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ≠ ∅ ) ) ) |
37 |
36
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ≠ ∅ ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) → ( ∃ 𝑛 ∈ ℕ 𝑦 = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } → 𝑦 ≠ ∅ ) ) |
39 |
23 38
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) → 𝑦 ≠ ∅ ) |
40 |
18 39
|
axccdom |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
41 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝜑 ) |
42 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) ↔ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) ) ) |
44 |
43
|
rabbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } = { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) |
45 |
44
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) |
46 |
45
|
rneqi |
⊢ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) = ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) |
47 |
46
|
fneq2i |
⊢ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ↔ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
48 |
47
|
biimpi |
⊢ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) → 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
49 |
48
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
50 |
46
|
raleqi |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
51 |
50
|
biimpi |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
53 |
52
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
54 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
55 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑆 ∈ SAlg ) |
56 |
|
ineq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝐷 ) = ( 𝑧 ∩ 𝐷 ) ) |
57 |
56
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) ↔ ( 𝐹 ‘ 𝑚 ) = ( 𝑧 ∩ 𝐷 ) ) ) |
58 |
57
|
cbvrabv |
⊢ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } = { 𝑧 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑧 ∩ 𝐷 ) } |
59 |
58
|
mpteq2i |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑧 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑧 ∩ 𝐷 ) } ) |
60 |
45 59
|
eqtr2i |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑧 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑧 ∩ 𝐷 ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
61 |
60
|
coeq2i |
⊢ ( 𝑓 ∘ ( 𝑚 ∈ ℕ ↦ { 𝑧 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑧 ∩ 𝐷 ) } ) ) = ( 𝑓 ∘ ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
62 |
47
|
biimpri |
⊢ ( 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) → 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
63 |
62
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ) |
64 |
46
|
eqcomi |
⊢ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) = ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) |
65 |
64
|
raleqi |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
66 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) ) |
67 |
|
id |
⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) |
68 |
66 67
|
eleq12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
69 |
68
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
70 |
65 69
|
bitri |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
71 |
70
|
biimpi |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
72 |
71
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
73 |
54 55 8 61 63 72
|
subsaliuncllem |
⊢ ( ( 𝜑 ∧ 𝑓 Fn ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑚 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
74 |
41 49 53 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
75 |
74
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
76 |
75
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 Fn ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ∧ ∀ 𝑦 ∈ ran ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∩ 𝐷 ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) ) |
77 |
40 76
|
mpd |
⊢ ( 𝜑 → ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
78 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑆 ∈ SAlg ) |
79 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝐷 ∈ V ) |
80 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ) → 𝑆 ∈ SAlg ) |
81 |
|
nnct |
⊢ ℕ ≼ ω |
82 |
81
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ) → ℕ ≼ ω ) |
83 |
|
elmapi |
⊢ ( 𝑒 ∈ ( 𝑆 ↑m ℕ ) → 𝑒 : ℕ ⟶ 𝑆 ) |
84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ) → 𝑒 : ℕ ⟶ 𝑆 ) |
85 |
84
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
86 |
80 82 85
|
saliuncl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ) → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
87 |
86
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ 𝑆 ) |
88 |
|
eqid |
⊢ ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) = ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) |
89 |
78 79 87 88
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
90 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) |
91 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
92 |
90 91
|
iuneq2df |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
93 |
|
iunin1 |
⊢ ∪ 𝑛 ∈ ℕ ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) = ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) |
94 |
93
|
a1i |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) → ∪ 𝑛 ∈ ℕ ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) = ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
95 |
92 94
|
eqtrd |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
96 |
95
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) |
97 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → 𝑇 = ( 𝑆 ↾t 𝐷 ) ) |
98 |
96 97
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → ( ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ↔ ( ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
99 |
89 98
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ) |
100 |
99
|
3exp |
⊢ ( 𝜑 → ( 𝑒 ∈ ( 𝑆 ↑m ℕ ) → ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ) ) ) |
101 |
100
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ( 𝑆 ↑m ℕ ) ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( ( 𝑒 ‘ 𝑛 ) ∩ 𝐷 ) → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ) ) |
102 |
77 101
|
mpd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ 𝑇 ) |