| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsaliuncl.1 | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | subsaliuncl.2 | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 3 |  | subsaliuncl.3 | ⊢ 𝑇  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 4 |  | subsaliuncl.4 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑇 ) | 
						
							| 5 |  | eqid | ⊢ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } | 
						
							| 6 | 5 1 | rabexd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V ) | 
						
							| 7 | 6 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 9 | 8 | fnmpt | ⊢ ( ∀ 𝑛  ∈  ℕ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ∈  V  →  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  Fn  ℕ ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  Fn  ℕ ) | 
						
							| 11 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 12 |  | fnrndomg | ⊢ ( ℕ  ∈  V  →  ( ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  Fn  ℕ  →  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ℕ ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  Fn  ℕ  →  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ℕ ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ℕ ) | 
						
							| 15 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ℕ  ≈  ω ) | 
						
							| 17 |  | domentr | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ℕ  ∧  ℕ  ≈  ω )  →  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ω ) | 
						
							| 18 | 14 16 17 | syl2anc | ⊢ ( 𝜑  →  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ≼  ω ) | 
						
							| 19 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 20 | 8 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  →  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) )  →  ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  →  𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 25 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑇 ) | 
						
							| 26 | 25 3 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 27 | 2 | elexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 28 |  | elrest | ⊢ ( ( 𝑆  ∈  SAlg  ∧  𝐷  ∈  V )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) ) ) | 
						
							| 29 | 1 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) ) ) | 
						
							| 31 | 26 30 | mpbid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) ) | 
						
							| 32 |  | rabn0 | ⊢ ( { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ≠  ∅  ↔  ∃ 𝑥  ∈  𝑆 ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) ) | 
						
							| 33 | 31 32 | sylibr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ≠  ∅ ) | 
						
							| 34 | 33 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  ≠  ∅ ) | 
						
							| 35 | 24 34 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  →  𝑦  ≠  ∅ ) | 
						
							| 36 | 35 | 3exp | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  →  ( 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ≠  ∅ ) ) ) | 
						
							| 37 | 36 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ≠  ∅ ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) )  →  ( ∃ 𝑛  ∈  ℕ 𝑦  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  →  𝑦  ≠  ∅ ) ) | 
						
							| 39 | 23 38 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) )  →  𝑦  ≠  ∅ ) | 
						
							| 40 | 18 39 | axccdom | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) )  →  𝜑 ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 43 | 42 | eqeq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 )  ↔  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) ) ) | 
						
							| 44 | 43 | rabbidv | ⊢ ( 𝑛  =  𝑚  →  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) }  =  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 45 | 44 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 46 | 45 | rneqi | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 47 | 46 | fneq2i | ⊢ ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ↔  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 48 | 47 | biimpi | ⊢ ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  →  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 49 | 48 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) )  →  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 50 | 46 | raleqi | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 51 | 50 | biimpi | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  →  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 53 | 52 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) )  →  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 54 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝜑  ∧  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 55 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  𝑆  ∈  SAlg ) | 
						
							| 56 |  | ineq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∩  𝐷 )  =  ( 𝑧  ∩  𝐷 ) ) | 
						
							| 57 | 56 | eqeq2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 )  ↔  ( 𝐹 ‘ 𝑚 )  =  ( 𝑧  ∩  𝐷 ) ) ) | 
						
							| 58 | 57 | cbvrabv | ⊢ { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) }  =  { 𝑧  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑧  ∩  𝐷 ) } | 
						
							| 59 | 58 | mpteq2i | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑧  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑧  ∩  𝐷 ) } ) | 
						
							| 60 | 45 59 | eqtr2i | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑧  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑧  ∩  𝐷 ) } )  =  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 61 | 60 | coeq2i | ⊢ ( 𝑓  ∘  ( 𝑚  ∈  ℕ  ↦  { 𝑧  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑧  ∩  𝐷 ) } ) )  =  ( 𝑓  ∘  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 62 | 47 | biimpri | ⊢ ( 𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  →  𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 63 | 62 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ) | 
						
							| 64 | 46 | eqcomi | ⊢ ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  =  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) | 
						
							| 65 | 64 | raleqi | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑧 ) ) | 
						
							| 67 |  | id | ⊢ ( 𝑦  =  𝑧  →  𝑦  =  𝑧 ) | 
						
							| 68 | 66 67 | eleq12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 69 | 68 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) | 
						
							| 70 | 65 69 | bitri | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) | 
						
							| 71 | 70 | biimpi | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  →  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) | 
						
							| 72 | 71 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) | 
						
							| 73 | 54 55 8 61 63 72 | subsaliuncllem | ⊢ ( ( 𝜑  ∧  𝑓  Fn  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑚 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 74 | 41 49 53 73 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) )  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 75 | 74 | ex | ⊢ ( 𝜑  →  ( ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 76 | 75 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓  Fn  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } )  ∧  ∀ 𝑦  ∈  ran  ( 𝑛  ∈  ℕ  ↦  { 𝑥  ∈  𝑆  ∣  ( 𝐹 ‘ 𝑛 )  =  ( 𝑥  ∩  𝐷 ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) ) | 
						
							| 77 | 40 76 | mpd | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 78 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 79 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝐷  ∈  V ) | 
						
							| 80 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ ) )  →  𝑆  ∈  SAlg ) | 
						
							| 81 |  | nnct | ⊢ ℕ  ≼  ω | 
						
							| 82 | 81 | a1i | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ ) )  →  ℕ  ≼  ω ) | 
						
							| 83 |  | elmapi | ⊢ ( 𝑒  ∈  ( 𝑆  ↑m  ℕ )  →  𝑒 : ℕ ⟶ 𝑆 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ ) )  →  𝑒 : ℕ ⟶ 𝑆 ) | 
						
							| 85 | 84 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑒 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 86 | 80 82 85 | saliuncl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ ) )  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 87 | 86 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 88 |  | eqid | ⊢ ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  =  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 89 | 78 79 87 88 | elrestd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 90 |  | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 91 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 92 | 90 91 | iuneq2df | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ℕ ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 93 |  | iunin1 | ⊢ ∪  𝑛  ∈  ℕ ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  =  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) | 
						
							| 94 | 93 | a1i | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  →  ∪  𝑛  ∈  ℕ ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  =  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 95 | 92 94 | eqtrd | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 96 | 95 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) ) | 
						
							| 97 | 3 | a1i | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  𝑇  =  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 98 | 96 97 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  ( ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  𝑇  ↔  ( ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 99 | 89 98 | mpbird | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ( 𝑆  ↑m  ℕ )  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 ) )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  𝑇 ) | 
						
							| 100 | 99 | 3exp | ⊢ ( 𝜑  →  ( 𝑒  ∈  ( 𝑆  ↑m  ℕ )  →  ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  𝑇 ) ) ) | 
						
							| 101 | 100 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑒  ∈  ( 𝑆  ↑m  ℕ ) ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ( ( 𝑒 ‘ 𝑛 )  ∩  𝐷 )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  𝑇 ) ) | 
						
							| 102 | 77 101 | mpd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  𝑇 ) |