Step |
Hyp |
Ref |
Expression |
1 |
|
subsaliuncl.1 |
|- ( ph -> S e. SAlg ) |
2 |
|
subsaliuncl.2 |
|- ( ph -> D e. V ) |
3 |
|
subsaliuncl.3 |
|- T = ( S |`t D ) |
4 |
|
subsaliuncl.4 |
|- ( ph -> F : NN --> T ) |
5 |
|
eqid |
|- { x e. S | ( F ` n ) = ( x i^i D ) } = { x e. S | ( F ` n ) = ( x i^i D ) } |
6 |
5 1
|
rabexd |
|- ( ph -> { x e. S | ( F ` n ) = ( x i^i D ) } e. _V ) |
7 |
6
|
ralrimivw |
|- ( ph -> A. n e. NN { x e. S | ( F ` n ) = ( x i^i D ) } e. _V ) |
8 |
|
eqid |
|- ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) = ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) |
9 |
8
|
fnmpt |
|- ( A. n e. NN { x e. S | ( F ` n ) = ( x i^i D ) } e. _V -> ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) Fn NN ) |
10 |
7 9
|
syl |
|- ( ph -> ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) Fn NN ) |
11 |
|
nnex |
|- NN e. _V |
12 |
|
fnrndomg |
|- ( NN e. _V -> ( ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) Fn NN -> ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ NN ) ) |
13 |
11 12
|
ax-mp |
|- ( ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) Fn NN -> ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ NN ) |
14 |
10 13
|
syl |
|- ( ph -> ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ NN ) |
15 |
|
nnenom |
|- NN ~~ _om |
16 |
15
|
a1i |
|- ( ph -> NN ~~ _om ) |
17 |
|
domentr |
|- ( ( ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ NN /\ NN ~~ _om ) -> ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ _om ) |
18 |
14 16 17
|
syl2anc |
|- ( ph -> ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ~<_ _om ) |
19 |
|
vex |
|- y e. _V |
20 |
8
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) <-> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
21 |
19 20
|
ax-mp |
|- ( y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) <-> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
22 |
21
|
biimpi |
|- ( y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) -> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
23 |
22
|
adantl |
|- ( ( ph /\ y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) -> E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
24 |
|
simp3 |
|- ( ( ph /\ n e. NN /\ y = { x e. S | ( F ` n ) = ( x i^i D ) } ) -> y = { x e. S | ( F ` n ) = ( x i^i D ) } ) |
25 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. T ) |
26 |
25 3
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ( S |`t D ) ) |
27 |
2
|
elexd |
|- ( ph -> D e. _V ) |
28 |
|
elrest |
|- ( ( S e. SAlg /\ D e. _V ) -> ( ( F ` n ) e. ( S |`t D ) <-> E. x e. S ( F ` n ) = ( x i^i D ) ) ) |
29 |
1 27 28
|
syl2anc |
|- ( ph -> ( ( F ` n ) e. ( S |`t D ) <-> E. x e. S ( F ` n ) = ( x i^i D ) ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) e. ( S |`t D ) <-> E. x e. S ( F ` n ) = ( x i^i D ) ) ) |
31 |
26 30
|
mpbid |
|- ( ( ph /\ n e. NN ) -> E. x e. S ( F ` n ) = ( x i^i D ) ) |
32 |
|
rabn0 |
|- ( { x e. S | ( F ` n ) = ( x i^i D ) } =/= (/) <-> E. x e. S ( F ` n ) = ( x i^i D ) ) |
33 |
31 32
|
sylibr |
|- ( ( ph /\ n e. NN ) -> { x e. S | ( F ` n ) = ( x i^i D ) } =/= (/) ) |
34 |
33
|
3adant3 |
|- ( ( ph /\ n e. NN /\ y = { x e. S | ( F ` n ) = ( x i^i D ) } ) -> { x e. S | ( F ` n ) = ( x i^i D ) } =/= (/) ) |
35 |
24 34
|
eqnetrd |
|- ( ( ph /\ n e. NN /\ y = { x e. S | ( F ` n ) = ( x i^i D ) } ) -> y =/= (/) ) |
36 |
35
|
3exp |
|- ( ph -> ( n e. NN -> ( y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y =/= (/) ) ) ) |
37 |
36
|
rexlimdv |
|- ( ph -> ( E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y =/= (/) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) -> ( E. n e. NN y = { x e. S | ( F ` n ) = ( x i^i D ) } -> y =/= (/) ) ) |
39 |
23 38
|
mpd |
|- ( ( ph /\ y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) -> y =/= (/) ) |
40 |
18 39
|
axccdom |
|- ( ph -> E. f ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) ) |
41 |
|
simpl |
|- ( ( ph /\ ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) ) -> ph ) |
42 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
43 |
42
|
eqeq1d |
|- ( n = m -> ( ( F ` n ) = ( x i^i D ) <-> ( F ` m ) = ( x i^i D ) ) ) |
44 |
43
|
rabbidv |
|- ( n = m -> { x e. S | ( F ` n ) = ( x i^i D ) } = { x e. S | ( F ` m ) = ( x i^i D ) } ) |
45 |
44
|
cbvmptv |
|- ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) = ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) |
46 |
45
|
rneqi |
|- ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) = ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) |
47 |
46
|
fneq2i |
|- ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) <-> f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ) |
48 |
47
|
biimpi |
|- ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) -> f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ) |
49 |
48
|
ad2antrl |
|- ( ( ph /\ ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) ) -> f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ) |
50 |
46
|
raleqi |
|- ( A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y <-> A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
51 |
50
|
biimpi |
|- ( A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y -> A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
52 |
51
|
adantl |
|- ( ( ph /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
53 |
52
|
adantrl |
|- ( ( ph /\ ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) ) -> A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
54 |
|
nfv |
|- F/ z ( ph /\ f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) /\ A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
55 |
1
|
3ad2ant1 |
|- ( ( ph /\ f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) /\ A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> S e. SAlg ) |
56 |
|
ineq1 |
|- ( x = z -> ( x i^i D ) = ( z i^i D ) ) |
57 |
56
|
eqeq2d |
|- ( x = z -> ( ( F ` m ) = ( x i^i D ) <-> ( F ` m ) = ( z i^i D ) ) ) |
58 |
57
|
cbvrabv |
|- { x e. S | ( F ` m ) = ( x i^i D ) } = { z e. S | ( F ` m ) = ( z i^i D ) } |
59 |
58
|
mpteq2i |
|- ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) = ( m e. NN |-> { z e. S | ( F ` m ) = ( z i^i D ) } ) |
60 |
45 59
|
eqtr2i |
|- ( m e. NN |-> { z e. S | ( F ` m ) = ( z i^i D ) } ) = ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) |
61 |
60
|
coeq2i |
|- ( f o. ( m e. NN |-> { z e. S | ( F ` m ) = ( z i^i D ) } ) ) = ( f o. ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
62 |
47
|
biimpri |
|- ( f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) -> f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
63 |
62
|
3ad2ant2 |
|- ( ( ph /\ f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) /\ A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ) |
64 |
46
|
eqcomi |
|- ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) = ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) |
65 |
64
|
raleqi |
|- ( A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y <-> A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) |
66 |
|
fveq2 |
|- ( y = z -> ( f ` y ) = ( f ` z ) ) |
67 |
|
id |
|- ( y = z -> y = z ) |
68 |
66 67
|
eleq12d |
|- ( y = z -> ( ( f ` y ) e. y <-> ( f ` z ) e. z ) ) |
69 |
68
|
cbvralvw |
|- ( A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y <-> A. z e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` z ) e. z ) |
70 |
65 69
|
bitri |
|- ( A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y <-> A. z e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` z ) e. z ) |
71 |
70
|
biimpi |
|- ( A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y -> A. z e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` z ) e. z ) |
72 |
71
|
3ad2ant3 |
|- ( ( ph /\ f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) /\ A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> A. z e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` z ) e. z ) |
73 |
54 55 8 61 63 72
|
subsaliuncllem |
|- ( ( ph /\ f Fn ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) /\ A. y e. ran ( m e. NN |-> { x e. S | ( F ` m ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) |
74 |
41 49 53 73
|
syl3anc |
|- ( ( ph /\ ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) ) -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) |
75 |
74
|
ex |
|- ( ph -> ( ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) ) |
76 |
75
|
exlimdv |
|- ( ph -> ( E. f ( f Fn ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) /\ A. y e. ran ( n e. NN |-> { x e. S | ( F ` n ) = ( x i^i D ) } ) ( f ` y ) e. y ) -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) ) |
77 |
40 76
|
mpd |
|- ( ph -> E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) |
78 |
1
|
3ad2ant1 |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> S e. SAlg ) |
79 |
27
|
3ad2ant1 |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> D e. _V ) |
80 |
1
|
adantr |
|- ( ( ph /\ e e. ( S ^m NN ) ) -> S e. SAlg ) |
81 |
|
nnct |
|- NN ~<_ _om |
82 |
81
|
a1i |
|- ( ( ph /\ e e. ( S ^m NN ) ) -> NN ~<_ _om ) |
83 |
|
elmapi |
|- ( e e. ( S ^m NN ) -> e : NN --> S ) |
84 |
83
|
adantl |
|- ( ( ph /\ e e. ( S ^m NN ) ) -> e : NN --> S ) |
85 |
84
|
ffvelrnda |
|- ( ( ( ph /\ e e. ( S ^m NN ) ) /\ n e. NN ) -> ( e ` n ) e. S ) |
86 |
80 82 85
|
saliuncl |
|- ( ( ph /\ e e. ( S ^m NN ) ) -> U_ n e. NN ( e ` n ) e. S ) |
87 |
86
|
3adant3 |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> U_ n e. NN ( e ` n ) e. S ) |
88 |
|
eqid |
|- ( U_ n e. NN ( e ` n ) i^i D ) = ( U_ n e. NN ( e ` n ) i^i D ) |
89 |
78 79 87 88
|
elrestd |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> ( U_ n e. NN ( e ` n ) i^i D ) e. ( S |`t D ) ) |
90 |
|
nfra1 |
|- F/ n A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) |
91 |
|
rspa |
|- ( ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) /\ n e. NN ) -> ( F ` n ) = ( ( e ` n ) i^i D ) ) |
92 |
90 91
|
iuneq2df |
|- ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) -> U_ n e. NN ( F ` n ) = U_ n e. NN ( ( e ` n ) i^i D ) ) |
93 |
|
iunin1 |
|- U_ n e. NN ( ( e ` n ) i^i D ) = ( U_ n e. NN ( e ` n ) i^i D ) |
94 |
93
|
a1i |
|- ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) -> U_ n e. NN ( ( e ` n ) i^i D ) = ( U_ n e. NN ( e ` n ) i^i D ) ) |
95 |
92 94
|
eqtrd |
|- ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) -> U_ n e. NN ( F ` n ) = ( U_ n e. NN ( e ` n ) i^i D ) ) |
96 |
95
|
3ad2ant3 |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> U_ n e. NN ( F ` n ) = ( U_ n e. NN ( e ` n ) i^i D ) ) |
97 |
3
|
a1i |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> T = ( S |`t D ) ) |
98 |
96 97
|
eleq12d |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> ( U_ n e. NN ( F ` n ) e. T <-> ( U_ n e. NN ( e ` n ) i^i D ) e. ( S |`t D ) ) ) |
99 |
89 98
|
mpbird |
|- ( ( ph /\ e e. ( S ^m NN ) /\ A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) ) -> U_ n e. NN ( F ` n ) e. T ) |
100 |
99
|
3exp |
|- ( ph -> ( e e. ( S ^m NN ) -> ( A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) -> U_ n e. NN ( F ` n ) e. T ) ) ) |
101 |
100
|
rexlimdv |
|- ( ph -> ( E. e e. ( S ^m NN ) A. n e. NN ( F ` n ) = ( ( e ` n ) i^i D ) -> U_ n e. NN ( F ` n ) e. T ) ) |
102 |
77 101
|
mpd |
|- ( ph -> U_ n e. NN ( F ` n ) e. T ) |