Metamath Proof Explorer


Theorem indifdir

Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by BTernaryTau, 14-Aug-2024)

Ref Expression
Assertion indifdir ABC=ACBC

Proof

Step Hyp Ref Expression
1 indifdi CAB=CACB
2 incom ABC=CAB
3 incom AC=CA
4 incom BC=CB
5 3 4 difeq12i ACBC=CACB
6 1 2 5 3eqtr4i ABC=ACBC