Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by BTernaryTau, 14-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | indifdir | |- ( ( A \ B ) i^i C ) = ( ( A i^i C ) \ ( B i^i C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi | |- ( C i^i ( A \ B ) ) = ( ( C i^i A ) \ ( C i^i B ) ) |
|
2 | incom | |- ( ( A \ B ) i^i C ) = ( C i^i ( A \ B ) ) |
|
3 | incom | |- ( A i^i C ) = ( C i^i A ) |
|
4 | incom | |- ( B i^i C ) = ( C i^i B ) |
|
5 | 3 4 | difeq12i | |- ( ( A i^i C ) \ ( B i^i C ) ) = ( ( C i^i A ) \ ( C i^i B ) ) |
6 | 1 2 5 | 3eqtr4i | |- ( ( A \ B ) i^i C ) = ( ( A i^i C ) \ ( B i^i C ) ) |