Metamath Proof Explorer


Theorem indifdir

Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by BTernaryTau, 14-Aug-2024)

Ref Expression
Assertion indifdir
|- ( ( A \ B ) i^i C ) = ( ( A i^i C ) \ ( B i^i C ) )

Proof

Step Hyp Ref Expression
1 indifdi
 |-  ( C i^i ( A \ B ) ) = ( ( C i^i A ) \ ( C i^i B ) )
2 incom
 |-  ( ( A \ B ) i^i C ) = ( C i^i ( A \ B ) )
3 incom
 |-  ( A i^i C ) = ( C i^i A )
4 incom
 |-  ( B i^i C ) = ( C i^i B )
5 3 4 difeq12i
 |-  ( ( A i^i C ) \ ( B i^i C ) ) = ( ( C i^i A ) \ ( C i^i B ) )
6 1 2 5 3eqtr4i
 |-  ( ( A \ B ) i^i C ) = ( ( A i^i C ) \ ( B i^i C ) )