Metamath Proof Explorer


Theorem iuneq2df

Description: Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses iuneq2df.1 xφ
iuneq2df.2 φxAB=C
Assertion iuneq2df φxAB=xAC

Proof

Step Hyp Ref Expression
1 iuneq2df.1 xφ
2 iuneq2df.2 φxAB=C
3 2 ex φxAB=C
4 1 3 ralrimi φxAB=C
5 iuneq2 xAB=CxAB=xAC
6 4 5 syl φxAB=xAC