Metamath Proof Explorer


Theorem iocborel

Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iocborel.a φ A *
iocborel.c φ C
iocborel.t J = topGen ran .
iocborel.b B = SalGen J
Assertion iocborel φ A C B

Proof

Step Hyp Ref Expression
1 iocborel.a φ A *
2 iocborel.c φ C
3 iocborel.t J = topGen ran .
4 iocborel.b B = SalGen J
5 1 2 iooiinioc φ n A C + 1 n = A C
6 5 eqcomd φ A C = n A C + 1 n
7 3 4 bor1sal B SAlg
8 7 a1i B SAlg
9 nnct ω
10 9 a1i ω
11 nnn0
12 11 a1i
13 3 4 iooborel A C + 1 n B
14 13 a1i n A C + 1 n B
15 8 10 12 14 saliincl n A C + 1 n B
16 15 mptru n A C + 1 n B
17 16 a1i φ n A C + 1 n B
18 6 17 eqeltrd φ A C B