| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iocborel.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
iocborel.c |
|- ( ph -> C e. RR ) |
| 3 |
|
iocborel.t |
|- J = ( topGen ` ran (,) ) |
| 4 |
|
iocborel.b |
|- B = ( SalGen ` J ) |
| 5 |
1 2
|
iooiinioc |
|- ( ph -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) = ( A (,] C ) ) |
| 6 |
5
|
eqcomd |
|- ( ph -> ( A (,] C ) = |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) ) |
| 7 |
3 4
|
bor1sal |
|- B e. SAlg |
| 8 |
7
|
a1i |
|- ( T. -> B e. SAlg ) |
| 9 |
|
nnct |
|- NN ~<_ _om |
| 10 |
9
|
a1i |
|- ( T. -> NN ~<_ _om ) |
| 11 |
|
nnn0 |
|- NN =/= (/) |
| 12 |
11
|
a1i |
|- ( T. -> NN =/= (/) ) |
| 13 |
3 4
|
iooborel |
|- ( A (,) ( C + ( 1 / n ) ) ) e. B |
| 14 |
13
|
a1i |
|- ( ( T. /\ n e. NN ) -> ( A (,) ( C + ( 1 / n ) ) ) e. B ) |
| 15 |
8 10 12 14
|
saliincl |
|- ( T. -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B ) |
| 16 |
15
|
mptru |
|- |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B |
| 17 |
16
|
a1i |
|- ( ph -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B ) |
| 18 |
6 17
|
eqeltrd |
|- ( ph -> ( A (,] C ) e. B ) |