Metamath Proof Explorer


Theorem iocborel

Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iocborel.a
|- ( ph -> A e. RR* )
iocborel.c
|- ( ph -> C e. RR )
iocborel.t
|- J = ( topGen ` ran (,) )
iocborel.b
|- B = ( SalGen ` J )
Assertion iocborel
|- ( ph -> ( A (,] C ) e. B )

Proof

Step Hyp Ref Expression
1 iocborel.a
 |-  ( ph -> A e. RR* )
2 iocborel.c
 |-  ( ph -> C e. RR )
3 iocborel.t
 |-  J = ( topGen ` ran (,) )
4 iocborel.b
 |-  B = ( SalGen ` J )
5 1 2 iooiinioc
 |-  ( ph -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) = ( A (,] C ) )
6 5 eqcomd
 |-  ( ph -> ( A (,] C ) = |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) )
7 3 4 bor1sal
 |-  B e. SAlg
8 7 a1i
 |-  ( T. -> B e. SAlg )
9 nnct
 |-  NN ~<_ _om
10 9 a1i
 |-  ( T. -> NN ~<_ _om )
11 nnn0
 |-  NN =/= (/)
12 11 a1i
 |-  ( T. -> NN =/= (/) )
13 3 4 iooborel
 |-  ( A (,) ( C + ( 1 / n ) ) ) e. B
14 13 a1i
 |-  ( ( T. /\ n e. NN ) -> ( A (,) ( C + ( 1 / n ) ) ) e. B )
15 8 10 12 14 saliincl
 |-  ( T. -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B )
16 15 mptru
 |-  |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B
17 16 a1i
 |-  ( ph -> |^|_ n e. NN ( A (,) ( C + ( 1 / n ) ) ) e. B )
18 6 17 eqeltrd
 |-  ( ph -> ( A (,] C ) e. B )