Metamath Proof Explorer


Theorem iooborel

Description: An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooborel.1
|- J = ( topGen ` ran (,) )
iooborel.2
|- B = ( SalGen ` J )
Assertion iooborel
|- ( A (,) C ) e. B

Proof

Step Hyp Ref Expression
1 iooborel.1
 |-  J = ( topGen ` ran (,) )
2 iooborel.2
 |-  B = ( SalGen ` J )
3 retop
 |-  ( topGen ` ran (,) ) e. Top
4 1 3 eqeltri
 |-  J e. Top
5 2 sssalgen
 |-  ( J e. Top -> J C_ B )
6 4 5 ax-mp
 |-  J C_ B
7 iooretop
 |-  ( A (,) C ) e. ( topGen ` ran (,) )
8 7 1 eleqtrri
 |-  ( A (,) C ) e. J
9 6 8 sselii
 |-  ( A (,) C ) e. B