Description: An open interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iooborel.1 | |- J = ( topGen ` ran (,) ) |
|
iooborel.2 | |- B = ( SalGen ` J ) |
||
Assertion | iooborel | |- ( A (,) C ) e. B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooborel.1 | |- J = ( topGen ` ran (,) ) |
|
2 | iooborel.2 | |- B = ( SalGen ` J ) |
|
3 | retop | |- ( topGen ` ran (,) ) e. Top |
|
4 | 1 3 | eqeltri | |- J e. Top |
5 | 2 | sssalgen | |- ( J e. Top -> J C_ B ) |
6 | 4 5 | ax-mp | |- J C_ B |
7 | iooretop | |- ( A (,) C ) e. ( topGen ` ran (,) ) |
|
8 | 7 1 | eleqtrri | |- ( A (,) C ) e. J |
9 | 6 8 | sselii | |- ( A (,) C ) e. B |