Metamath Proof Explorer


Theorem iooiinioc

Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iooiinioc.1 φ A *
iooiinioc.2 φ B
Assertion iooiinioc φ n A B + 1 n = A B

Proof

Step Hyp Ref Expression
1 iooiinioc.1 φ A *
2 iooiinioc.2 φ B
3 1 adantr φ x n A B + 1 n A *
4 2 adantr φ x n A B + 1 n B
5 4 rexrd φ x n A B + 1 n B *
6 1nn 1
7 ioossre A B + 1 1
8 oveq2 n = 1 1 n = 1 1
9 8 oveq2d n = 1 B + 1 n = B + 1 1
10 9 oveq2d n = 1 A B + 1 n = A B + 1 1
11 10 sseq1d n = 1 A B + 1 n A B + 1 1
12 11 rspcev 1 A B + 1 1 n A B + 1 n
13 6 7 12 mp2an n A B + 1 n
14 iinss n A B + 1 n n A B + 1 n
15 13 14 ax-mp n A B + 1 n
16 15 a1i φ x n A B + 1 n n A B + 1 n
17 simpr φ x n A B + 1 n x n A B + 1 n
18 16 17 sseldd φ x n A B + 1 n x
19 18 rexrd φ x n A B + 1 n x *
20 1red φ 1
21 ax-1ne0 1 0
22 21 a1i φ 1 0
23 20 20 22 redivcld φ 1 1
24 2 23 readdcld φ B + 1 1
25 24 rexrd φ B + 1 1 *
26 25 adantr φ x n A B + 1 n B + 1 1 *
27 id x n A B + 1 n x n A B + 1 n
28 6 a1i x n A B + 1 n 1
29 10 eleq2d n = 1 x A B + 1 n x A B + 1 1
30 27 28 29 eliind x n A B + 1 n x A B + 1 1
31 30 adantl φ x n A B + 1 n x A B + 1 1
32 ioogtlb A * B + 1 1 * x A B + 1 1 A < x
33 3 26 31 32 syl3anc φ x n A B + 1 n A < x
34 nfv n φ
35 nfcv _ n x
36 nfii1 _ n n A B + 1 n
37 35 36 nfel n x n A B + 1 n
38 34 37 nfan n φ x n A B + 1 n
39 simpll φ x n A B + 1 n n φ
40 iinss2 n n A B + 1 n A B + 1 n
41 40 adantl x n A B + 1 n n n A B + 1 n A B + 1 n
42 simpl x n A B + 1 n n x n A B + 1 n
43 41 42 sseldd x n A B + 1 n n x A B + 1 n
44 43 adantll φ x n A B + 1 n n x A B + 1 n
45 simpr φ x n A B + 1 n n n
46 elioore x A B + 1 n x
47 46 adantr x A B + 1 n n x
48 47 adantll φ x A B + 1 n n x
49 2 adantr φ n B
50 nnrecre n 1 n
51 50 adantl φ n 1 n
52 49 51 readdcld φ n B + 1 n
53 52 adantlr φ x A B + 1 n n B + 1 n
54 1 adantr φ n A *
55 54 adantlr φ x A B + 1 n n A *
56 52 rexrd φ n B + 1 n *
57 56 adantlr φ x A B + 1 n n B + 1 n *
58 simplr φ x A B + 1 n n x A B + 1 n
59 iooltub A * B + 1 n * x A B + 1 n x < B + 1 n
60 55 57 58 59 syl3anc φ x A B + 1 n n x < B + 1 n
61 48 53 60 ltled φ x A B + 1 n n x B + 1 n
62 39 44 45 61 syl21anc φ x n A B + 1 n n x B + 1 n
63 62 ex φ x n A B + 1 n n x B + 1 n
64 38 63 ralrimi φ x n A B + 1 n n x B + 1 n
65 38 19 4 xrralrecnnle φ x n A B + 1 n x B n x B + 1 n
66 64 65 mpbird φ x n A B + 1 n x B
67 3 5 19 33 66 eliocd φ x n A B + 1 n x A B
68 67 ralrimiva φ x n A B + 1 n x A B
69 dfss3 n A B + 1 n A B x n A B + 1 n x A B
70 68 69 sylibr φ n A B + 1 n A B
71 1 xrleidd φ A A
72 71 adantr φ n A A
73 1rp 1 +
74 73 a1i n 1 +
75 nnrp n n +
76 74 75 rpdivcld n 1 n +
77 76 adantl φ n 1 n +
78 49 77 ltaddrpd φ n B < B + 1 n
79 iocssioo A * B + 1 n * A A B < B + 1 n A B A B + 1 n
80 54 56 72 78 79 syl22anc φ n A B A B + 1 n
81 80 ralrimiva φ n A B A B + 1 n
82 ssiin A B n A B + 1 n n A B A B + 1 n
83 81 82 sylibr φ A B n A B + 1 n
84 70 83 eqssd φ n A B + 1 n = A B