| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressiooinf.a |  | 
						
							| 2 |  | ressiooinf.s |  | 
						
							| 3 |  | ressiooinf.n |  | 
						
							| 4 |  | ressiooinf.i |  | 
						
							| 5 |  | ressxr |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 | 1 6 | sstrd |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 8 | infxrcld |  | 
						
							| 10 | 2 9 | eqeltrid |  | 
						
							| 11 |  | pnfxr |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 | 1 | adantr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 13 14 | sseldd |  | 
						
							| 16 | 7 | sselda |  | 
						
							| 17 |  | infxrlb |  | 
						
							| 18 | 8 14 17 | syl2anc |  | 
						
							| 19 | 2 18 | eqbrtrid |  | 
						
							| 20 |  | id |  | 
						
							| 21 | 20 | eqcomd |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | simpl |  | 
						
							| 24 | 22 23 | eqeltrd |  | 
						
							| 25 | 24 | adantll |  | 
						
							| 26 | 3 | ad2antrr |  | 
						
							| 27 | 25 26 | pm2.65da |  | 
						
							| 28 | 27 | neqned |  | 
						
							| 29 | 28 | necomd |  | 
						
							| 30 | 10 16 19 29 | xrleneltd |  | 
						
							| 31 | 15 | ltpnfd |  | 
						
							| 32 | 10 12 15 30 31 | eliood |  | 
						
							| 33 | 32 4 | eleqtrrdi |  | 
						
							| 34 | 33 | ralrimiva |  | 
						
							| 35 |  | dfss3 |  | 
						
							| 36 | 34 35 | sylibr |  |