Metamath Proof Explorer


Theorem iocleubd

Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iocleubd.1 φA*
iocleubd.2 φB*
iocleubd.3 φCAB
Assertion iocleubd φCB

Proof

Step Hyp Ref Expression
1 iocleubd.1 φA*
2 iocleubd.2 φB*
3 iocleubd.3 φCAB
4 iocleub A*B*CABCB
5 1 2 3 4 syl3anc φCB