Metamath Proof Explorer


Theorem iocleub

Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iocleub A*B*CABCB

Proof

Step Hyp Ref Expression
1 elioc1 A*B*CABC*A<CCB
2 simp3 C*A<CCBCB
3 1 2 syl6bi A*B*CABCB
4 3 3impia A*B*CABCB