Metamath Proof Explorer
Description: Membership in a closed real interval. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eliccd.1 |
|
|
|
eliccd.2 |
|
|
|
eliccd.3 |
|
|
|
eliccd.4 |
|
|
|
eliccd.5 |
|
|
Assertion |
eliccd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliccd.1 |
|
| 2 |
|
eliccd.2 |
|
| 3 |
|
eliccd.3 |
|
| 4 |
|
eliccd.4 |
|
| 5 |
|
eliccd.5 |
|
| 6 |
|
elicc2 |
|
| 7 |
1 2 6
|
syl2anc |
|
| 8 |
3 4 5 7
|
mpbir3and |
|