Metamath Proof Explorer


Theorem eliccd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccd.1 φA
eliccd.2 φB
eliccd.3 φC
eliccd.4 φAC
eliccd.5 φCB
Assertion eliccd φCAB

Proof

Step Hyp Ref Expression
1 eliccd.1 φA
2 eliccd.2 φB
3 eliccd.3 φC
4 eliccd.4 φAC
5 eliccd.5 φCB
6 elicc2 ABCABCACCB
7 1 2 6 syl2anc φCABCACCB
8 3 4 5 7 mpbir3and φCAB