Metamath Proof Explorer


Theorem iocleubd

Description: An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iocleubd.1 ( 𝜑𝐴 ∈ ℝ* )
iocleubd.2 ( 𝜑𝐵 ∈ ℝ* )
iocleubd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )
Assertion iocleubd ( 𝜑𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 iocleubd.1 ( 𝜑𝐴 ∈ ℝ* )
2 iocleubd.2 ( 𝜑𝐵 ∈ ℝ* )
3 iocleubd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )
4 iocleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶𝐵 )
5 1 2 3 4 syl3anc ( 𝜑𝐶𝐵 )