Metamath Proof Explorer


Theorem uzinico

Description: An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzinico.1 ( 𝜑𝑀 ∈ ℤ )
uzinico.2 𝑍 = ( ℤ𝑀 )
Assertion uzinico ( 𝜑𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) )

Proof

Step Hyp Ref Expression
1 uzinico.1 ( 𝜑𝑀 ∈ ℤ )
2 uzinico.2 𝑍 = ( ℤ𝑀 )
3 2 eluzelz2 ( 𝑘𝑍𝑘 ∈ ℤ )
4 3 adantl ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ℤ )
5 1 zred ( 𝜑𝑀 ∈ ℝ )
6 5 rexrd ( 𝜑𝑀 ∈ ℝ* )
7 6 adantr ( ( 𝜑𝑘𝑍 ) → 𝑀 ∈ ℝ* )
8 pnfxr +∞ ∈ ℝ*
9 8 a1i ( ( 𝜑𝑘𝑍 ) → +∞ ∈ ℝ* )
10 zssre ℤ ⊆ ℝ
11 ressxr ℝ ⊆ ℝ*
12 10 11 sstri ℤ ⊆ ℝ*
13 12 3 sselid ( 𝑘𝑍𝑘 ∈ ℝ* )
14 13 adantl ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ℝ* )
15 2 eleq2i ( 𝑘𝑍𝑘 ∈ ( ℤ𝑀 ) )
16 15 biimpi ( 𝑘𝑍𝑘 ∈ ( ℤ𝑀 ) )
17 eluzle ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑀𝑘 )
18 16 17 syl ( 𝑘𝑍𝑀𝑘 )
19 18 adantl ( ( 𝜑𝑘𝑍 ) → 𝑀𝑘 )
20 10 3 sselid ( 𝑘𝑍𝑘 ∈ ℝ )
21 20 ltpnfd ( 𝑘𝑍𝑘 < +∞ )
22 21 adantl ( ( 𝜑𝑘𝑍 ) → 𝑘 < +∞ )
23 7 9 14 19 22 elicod ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) )
24 4 23 elind ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) )
25 24 ex ( 𝜑 → ( 𝑘𝑍𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) )
26 1 adantr ( ( 𝜑𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑀 ∈ ℤ )
27 elinel1 ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ℤ )
28 27 adantl ( ( 𝜑𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ℤ )
29 elinel2 ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) )
30 29 adantl ( ( 𝜑𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) )
31 6 adantr ( ( 𝜑𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ* )
32 8 a1i ( ( 𝜑𝑘 ∈ ( 𝑀 [,) +∞ ) ) → +∞ ∈ ℝ* )
33 simpr ( ( 𝜑𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) )
34 31 32 33 icogelbd ( ( 𝜑𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀𝑘 )
35 30 34 syldan ( ( 𝜑𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑀𝑘 )
36 2 26 28 35 eluzd ( ( 𝜑𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘𝑍 )
37 36 ex ( 𝜑 → ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘𝑍 ) )
38 25 37 impbid ( 𝜑 → ( 𝑘𝑍𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) )
39 38 alrimiv ( 𝜑 → ∀ 𝑘 ( 𝑘𝑍𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) )
40 dfcleq ( 𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ↔ ∀ 𝑘 ( 𝑘𝑍𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) )
41 39 40 sylibr ( 𝜑𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) )