| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzinico.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
uzinico.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
2
|
eluzelz2 |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 5 |
1
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 6 |
5
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ∈ ℝ* ) |
| 8 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → +∞ ∈ ℝ* ) |
| 10 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 11 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 12 |
10 11
|
sstri |
⊢ ℤ ⊆ ℝ* |
| 13 |
12 3
|
sselid |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ* ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℝ* ) |
| 15 |
2
|
eleq2i |
⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 |
15
|
biimpi |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑘 ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑘 ∈ 𝑍 → 𝑀 ≤ 𝑘 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ≤ 𝑘 ) |
| 20 |
10 3
|
sselid |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ ) |
| 21 |
20
|
ltpnfd |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 < +∞ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 < +∞ ) |
| 23 |
7 9 14 19 22
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 24 |
4 23
|
elind |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) |
| 25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) ) |
| 26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑀 ∈ ℤ ) |
| 27 |
|
elinel1 |
⊢ ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ℤ ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ℤ ) |
| 29 |
|
elinel2 |
⊢ ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ* ) |
| 32 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 34 |
31 32 33
|
icogelbd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑘 ) |
| 35 |
30 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑀 ≤ 𝑘 ) |
| 36 |
2 26 28 35
|
eluzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ 𝑍 ) |
| 37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) → 𝑘 ∈ 𝑍 ) ) |
| 38 |
25 37
|
impbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) ) |
| 39 |
38
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) ) |
| 40 |
|
dfcleq |
⊢ ( 𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ↔ ∀ 𝑘 ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝜑 → 𝑍 = ( ℤ ∩ ( 𝑀 [,) +∞ ) ) ) |