| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzinico.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
uzinico.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
2
|
eluzelz2 |
|- ( k e. Z -> k e. ZZ ) |
| 4 |
3
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 5 |
1
|
zred |
|- ( ph -> M e. RR ) |
| 6 |
5
|
rexrd |
|- ( ph -> M e. RR* ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ k e. Z ) -> M e. RR* ) |
| 8 |
|
pnfxr |
|- +oo e. RR* |
| 9 |
8
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
| 10 |
|
zssre |
|- ZZ C_ RR |
| 11 |
|
ressxr |
|- RR C_ RR* |
| 12 |
10 11
|
sstri |
|- ZZ C_ RR* |
| 13 |
12 3
|
sselid |
|- ( k e. Z -> k e. RR* ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. RR* ) |
| 15 |
2
|
eleq2i |
|- ( k e. Z <-> k e. ( ZZ>= ` M ) ) |
| 16 |
15
|
biimpi |
|- ( k e. Z -> k e. ( ZZ>= ` M ) ) |
| 17 |
|
eluzle |
|- ( k e. ( ZZ>= ` M ) -> M <_ k ) |
| 18 |
16 17
|
syl |
|- ( k e. Z -> M <_ k ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ k e. Z ) -> M <_ k ) |
| 20 |
10 3
|
sselid |
|- ( k e. Z -> k e. RR ) |
| 21 |
20
|
ltpnfd |
|- ( k e. Z -> k < +oo ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ k e. Z ) -> k < +oo ) |
| 23 |
7 9 14 19 22
|
elicod |
|- ( ( ph /\ k e. Z ) -> k e. ( M [,) +oo ) ) |
| 24 |
4 23
|
elind |
|- ( ( ph /\ k e. Z ) -> k e. ( ZZ i^i ( M [,) +oo ) ) ) |
| 25 |
24
|
ex |
|- ( ph -> ( k e. Z -> k e. ( ZZ i^i ( M [,) +oo ) ) ) ) |
| 26 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ i^i ( M [,) +oo ) ) ) -> M e. ZZ ) |
| 27 |
|
elinel1 |
|- ( k e. ( ZZ i^i ( M [,) +oo ) ) -> k e. ZZ ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ k e. ( ZZ i^i ( M [,) +oo ) ) ) -> k e. ZZ ) |
| 29 |
|
elinel2 |
|- ( k e. ( ZZ i^i ( M [,) +oo ) ) -> k e. ( M [,) +oo ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ k e. ( ZZ i^i ( M [,) +oo ) ) ) -> k e. ( M [,) +oo ) ) |
| 31 |
6
|
adantr |
|- ( ( ph /\ k e. ( M [,) +oo ) ) -> M e. RR* ) |
| 32 |
8
|
a1i |
|- ( ( ph /\ k e. ( M [,) +oo ) ) -> +oo e. RR* ) |
| 33 |
|
simpr |
|- ( ( ph /\ k e. ( M [,) +oo ) ) -> k e. ( M [,) +oo ) ) |
| 34 |
31 32 33
|
icogelbd |
|- ( ( ph /\ k e. ( M [,) +oo ) ) -> M <_ k ) |
| 35 |
30 34
|
syldan |
|- ( ( ph /\ k e. ( ZZ i^i ( M [,) +oo ) ) ) -> M <_ k ) |
| 36 |
2 26 28 35
|
eluzd |
|- ( ( ph /\ k e. ( ZZ i^i ( M [,) +oo ) ) ) -> k e. Z ) |
| 37 |
36
|
ex |
|- ( ph -> ( k e. ( ZZ i^i ( M [,) +oo ) ) -> k e. Z ) ) |
| 38 |
25 37
|
impbid |
|- ( ph -> ( k e. Z <-> k e. ( ZZ i^i ( M [,) +oo ) ) ) ) |
| 39 |
38
|
alrimiv |
|- ( ph -> A. k ( k e. Z <-> k e. ( ZZ i^i ( M [,) +oo ) ) ) ) |
| 40 |
|
dfcleq |
|- ( Z = ( ZZ i^i ( M [,) +oo ) ) <-> A. k ( k e. Z <-> k e. ( ZZ i^i ( M [,) +oo ) ) ) ) |
| 41 |
39 40
|
sylibr |
|- ( ph -> Z = ( ZZ i^i ( M [,) +oo ) ) ) |