| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimaiocmnf.1 |
|- ( ph -> F : A --> RR ) |
| 2 |
|
preimaiocmnf.2 |
|- ( ph -> B e. RR* ) |
| 3 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
| 4 |
|
fncnvima2 |
|- ( F Fn A -> ( `' F " ( -oo (,] B ) ) = { x e. A | ( F ` x ) e. ( -oo (,] B ) } ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( `' F " ( -oo (,] B ) ) = { x e. A | ( F ` x ) e. ( -oo (,] B ) } ) |
| 6 |
|
mnfxr |
|- -oo e. RR* |
| 7 |
6
|
a1i |
|- ( ( ph /\ ( F ` x ) e. ( -oo (,] B ) ) -> -oo e. RR* ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ ( F ` x ) e. ( -oo (,] B ) ) -> B e. RR* ) |
| 9 |
|
simpr |
|- ( ( ph /\ ( F ` x ) e. ( -oo (,] B ) ) -> ( F ` x ) e. ( -oo (,] B ) ) |
| 10 |
7 8 9
|
iocleubd |
|- ( ( ph /\ ( F ` x ) e. ( -oo (,] B ) ) -> ( F ` x ) <_ B ) |
| 11 |
10
|
ex |
|- ( ph -> ( ( F ` x ) e. ( -oo (,] B ) -> ( F ` x ) <_ B ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo (,] B ) -> ( F ` x ) <_ B ) ) |
| 13 |
6
|
a1i |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> -oo e. RR* ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ ( F ` x ) <_ B ) -> B e. RR* ) |
| 15 |
14
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> B e. RR* ) |
| 16 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR ) |
| 17 |
16
|
rexrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR* ) |
| 18 |
17
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> ( F ` x ) e. RR* ) |
| 19 |
16
|
mnfltd |
|- ( ( ph /\ x e. A ) -> -oo < ( F ` x ) ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> -oo < ( F ` x ) ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> ( F ` x ) <_ B ) |
| 22 |
13 15 18 20 21
|
eliocd |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) <_ B ) -> ( F ` x ) e. ( -oo (,] B ) ) |
| 23 |
22
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) <_ B -> ( F ` x ) e. ( -oo (,] B ) ) ) |
| 24 |
12 23
|
impbid |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo (,] B ) <-> ( F ` x ) <_ B ) ) |
| 25 |
24
|
rabbidva |
|- ( ph -> { x e. A | ( F ` x ) e. ( -oo (,] B ) } = { x e. A | ( F ` x ) <_ B } ) |
| 26 |
5 25
|
eqtrd |
|- ( ph -> ( `' F " ( -oo (,] B ) ) = { x e. A | ( F ` x ) <_ B } ) |