Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fncnvima2 | |- ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima | |- ( F Fn A -> ( x e. ( `' F " B ) <-> ( x e. A /\ ( F ` x ) e. B ) ) ) |
|
| 2 | 1 | eqabdv | |- ( F Fn A -> ( `' F " B ) = { x | ( x e. A /\ ( F ` x ) e. B ) } ) |
| 3 | df-rab | |- { x e. A | ( F ` x ) e. B } = { x | ( x e. A /\ ( F ` x ) e. B ) } |
|
| 4 | 2 3 | eqtr4di | |- ( F Fn A -> ( `' F " B ) = { x e. A | ( F ` x ) e. B } ) |