Metamath Proof Explorer


Theorem fncnvima2

Description: Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fncnvima2 FFnAF-1B=xA|FxB

Proof

Step Hyp Ref Expression
1 elpreima FFnAxF-1BxAFxB
2 1 eqabdv FFnAF-1B=x|xAFxB
3 df-rab xA|FxB=x|xAFxB
4 2 3 eqtr4di FFnAF-1B=xA|FxB