Metamath Proof Explorer


Theorem fniniseg2

Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fniniseg2 FFnAF-1B=xA|Fx=B

Proof

Step Hyp Ref Expression
1 fncnvima2 FFnAF-1B=xA|FxB
2 fvex FxV
3 2 elsn FxBFx=B
4 3 rabbii xA|FxB=xA|Fx=B
5 1 4 eqtrdi FFnAF-1B=xA|Fx=B