Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fniniseg2 | |- ( F Fn A -> ( `' F " { B } ) = { x e. A | ( F ` x ) = B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncnvima2 | |- ( F Fn A -> ( `' F " { B } ) = { x e. A | ( F ` x ) e. { B } } ) |
|
| 2 | fvex | |- ( F ` x ) e. _V |
|
| 3 | 2 | elsn | |- ( ( F ` x ) e. { B } <-> ( F ` x ) = B ) |
| 4 | 3 | rabbii | |- { x e. A | ( F ` x ) e. { B } } = { x e. A | ( F ` x ) = B } |
| 5 | 1 4 | eqtrdi | |- ( F Fn A -> ( `' F " { B } ) = { x e. A | ( F ` x ) = B } ) |