Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fniniseg2 | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fncnvima2 | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } } ) | |
| 2 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 3 | 2 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 4 | 3 | rabbii | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } |
| 5 | 1 4 | eqtrdi | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } ) |