Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fniniseg2 | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } } ) | |
2 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
3 | 2 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
4 | 3 | rabbii | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } |
5 | 1 4 | eqtrdi | ⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ { 𝐵 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) = 𝐵 } ) |