Metamath Proof Explorer


Theorem unpreima

Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion unpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
2 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( 𝐹 “ ( 𝐴𝐵 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ ( 𝐴𝐵 ) ) ) )
3 elun ( ( 𝐹𝑥 ) ∈ ( 𝐴𝐵 ) ↔ ( ( 𝐹𝑥 ) ∈ 𝐴 ∨ ( 𝐹𝑥 ) ∈ 𝐵 ) )
4 3 anbi2i ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹𝑥 ) ∈ 𝐴 ∨ ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
5 andi ( ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹𝑥 ) ∈ 𝐴 ∨ ( 𝐹𝑥 ) ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
6 4 5 bitri ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ ( 𝐴𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
7 elun ( 𝑥 ∈ ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐹𝐴 ) ∨ 𝑥 ∈ ( 𝐹𝐵 ) ) )
8 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( 𝐹𝐴 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐴 ) ) )
9 elpreima ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( 𝐹𝐵 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) )
10 8 9 orbi12d ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ ( 𝐹𝐴 ) ∨ 𝑥 ∈ ( 𝐹𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) ) )
11 7 10 bitrid ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ 𝐵 ) ) ) )
12 6 11 bitr4id ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹𝑥 ) ∈ ( 𝐴𝐵 ) ) ↔ 𝑥 ∈ ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) ) )
13 2 12 bitrd ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( 𝐹 “ ( 𝐴𝐵 ) ) ↔ 𝑥 ∈ ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) ) )
14 13 eqrdv ( 𝐹 Fn dom 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) )
15 1 14 sylbi ( Fun 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∪ ( 𝐹𝐵 ) ) )