| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 2 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 3 |
|
elun |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 |
3
|
anbi2i |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 5 |
|
andi |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ∨ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 7 |
|
elun |
⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ∨ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 8 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ) ) |
| 9 |
|
elpreima |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 10 |
8 9
|
orbi12d |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ ( ◡ 𝐹 “ 𝐴 ) ∨ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 11 |
7 10
|
bitrid |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ↔ ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) ∨ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 12 |
6 11
|
bitr4id |
⊢ ( 𝐹 Fn dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
| 13 |
2 12
|
bitrd |
⊢ ( 𝐹 Fn dom 𝐹 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐴 ∪ 𝐵 ) ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
| 14 |
13
|
eqrdv |
⊢ ( 𝐹 Fn dom 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 15 |
1 14
|
sylbi |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∪ ( ◡ 𝐹 “ 𝐵 ) ) ) |