| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 2 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) ) ) |
| 3 |
|
elun |
|- ( ( F ` x ) e. ( A u. B ) <-> ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) |
| 4 |
3
|
anbi2i |
|- ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) ) |
| 5 |
|
andi |
|- ( ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
| 6 |
4 5
|
bitri |
|- ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
| 7 |
|
elun |
|- ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) ) |
| 8 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) |
| 9 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " B ) <-> ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
| 10 |
8 9
|
orbi12d |
|- ( F Fn dom F -> ( ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) |
| 11 |
7 10
|
bitrid |
|- ( F Fn dom F -> ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) |
| 12 |
6 11
|
bitr4id |
|- ( F Fn dom F -> ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) |
| 13 |
2 12
|
bitrd |
|- ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) |
| 14 |
13
|
eqrdv |
|- ( F Fn dom F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |
| 15 |
1 14
|
sylbi |
|- ( Fun F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |