| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimaiocmnf.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 2 |
|
preimaiocmnf.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 4 |
|
fncnvima2 |
⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) } ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) } ) |
| 6 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) → -∞ ∈ ℝ* ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) |
| 10 |
7 8 9
|
iocleubd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) |
| 11 |
10
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) ) |
| 13 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → -∞ ∈ ℝ* ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 16 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 17 |
16
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 19 |
16
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ < ( 𝐹 ‘ 𝑥 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → -∞ < ( 𝐹 ‘ 𝑥 ) ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) |
| 22 |
13 15 18 20 21
|
eliocd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ) ) |
| 24 |
12 23
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 ) ) |
| 25 |
24
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,] 𝐵 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 } ) |
| 26 |
5 25
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,] 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝐵 } ) |