| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressiooinf.a |
|- ( ph -> A C_ RR ) |
| 2 |
|
ressiooinf.s |
|- S = inf ( A , RR* , < ) |
| 3 |
|
ressiooinf.n |
|- ( ph -> -. S e. A ) |
| 4 |
|
ressiooinf.i |
|- I = ( S (,) +oo ) |
| 5 |
|
ressxr |
|- RR C_ RR* |
| 6 |
5
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 7 |
1 6
|
sstrd |
|- ( ph -> A C_ RR* ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR* ) |
| 9 |
8
|
infxrcld |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) e. RR* ) |
| 10 |
2 9
|
eqeltrid |
|- ( ( ph /\ x e. A ) -> S e. RR* ) |
| 11 |
|
pnfxr |
|- +oo e. RR* |
| 12 |
11
|
a1i |
|- ( ( ph /\ x e. A ) -> +oo e. RR* ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ RR ) |
| 14 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 15 |
13 14
|
sseldd |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
| 16 |
7
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
| 17 |
|
infxrlb |
|- ( ( A C_ RR* /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
| 18 |
8 14 17
|
syl2anc |
|- ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) |
| 19 |
2 18
|
eqbrtrid |
|- ( ( ph /\ x e. A ) -> S <_ x ) |
| 20 |
|
id |
|- ( x = S -> x = S ) |
| 21 |
20
|
eqcomd |
|- ( x = S -> S = x ) |
| 22 |
21
|
adantl |
|- ( ( x e. A /\ x = S ) -> S = x ) |
| 23 |
|
simpl |
|- ( ( x e. A /\ x = S ) -> x e. A ) |
| 24 |
22 23
|
eqeltrd |
|- ( ( x e. A /\ x = S ) -> S e. A ) |
| 25 |
24
|
adantll |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> S e. A ) |
| 26 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ x = S ) -> -. S e. A ) |
| 27 |
25 26
|
pm2.65da |
|- ( ( ph /\ x e. A ) -> -. x = S ) |
| 28 |
27
|
neqned |
|- ( ( ph /\ x e. A ) -> x =/= S ) |
| 29 |
28
|
necomd |
|- ( ( ph /\ x e. A ) -> S =/= x ) |
| 30 |
10 16 19 29
|
xrleneltd |
|- ( ( ph /\ x e. A ) -> S < x ) |
| 31 |
15
|
ltpnfd |
|- ( ( ph /\ x e. A ) -> x < +oo ) |
| 32 |
10 12 15 30 31
|
eliood |
|- ( ( ph /\ x e. A ) -> x e. ( S (,) +oo ) ) |
| 33 |
32 4
|
eleqtrrdi |
|- ( ( ph /\ x e. A ) -> x e. I ) |
| 34 |
33
|
ralrimiva |
|- ( ph -> A. x e. A x e. I ) |
| 35 |
|
dfss3 |
|- ( A C_ I <-> A. x e. A x e. I ) |
| 36 |
34 35
|
sylibr |
|- ( ph -> A C_ I ) |