| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressiooinf.a |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | ressiooinf.s |  |-  S = inf ( A , RR* , < ) | 
						
							| 3 |  | ressiooinf.n |  |-  ( ph -> -. S e. A ) | 
						
							| 4 |  | ressiooinf.i |  |-  I = ( S (,) +oo ) | 
						
							| 5 |  | ressxr |  |-  RR C_ RR* | 
						
							| 6 | 5 | a1i |  |-  ( ph -> RR C_ RR* ) | 
						
							| 7 | 1 6 | sstrd |  |-  ( ph -> A C_ RR* ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ph /\ x e. A ) -> A C_ RR* ) | 
						
							| 9 | 8 | infxrcld |  |-  ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) e. RR* ) | 
						
							| 10 | 2 9 | eqeltrid |  |-  ( ( ph /\ x e. A ) -> S e. RR* ) | 
						
							| 11 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ x e. A ) -> +oo e. RR* ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> A C_ RR ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 15 | 13 14 | sseldd |  |-  ( ( ph /\ x e. A ) -> x e. RR ) | 
						
							| 16 | 7 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. RR* ) | 
						
							| 17 |  | infxrlb |  |-  ( ( A C_ RR* /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) | 
						
							| 18 | 8 14 17 | syl2anc |  |-  ( ( ph /\ x e. A ) -> inf ( A , RR* , < ) <_ x ) | 
						
							| 19 | 2 18 | eqbrtrid |  |-  ( ( ph /\ x e. A ) -> S <_ x ) | 
						
							| 20 |  | id |  |-  ( x = S -> x = S ) | 
						
							| 21 | 20 | eqcomd |  |-  ( x = S -> S = x ) | 
						
							| 22 | 21 | adantl |  |-  ( ( x e. A /\ x = S ) -> S = x ) | 
						
							| 23 |  | simpl |  |-  ( ( x e. A /\ x = S ) -> x e. A ) | 
						
							| 24 | 22 23 | eqeltrd |  |-  ( ( x e. A /\ x = S ) -> S e. A ) | 
						
							| 25 | 24 | adantll |  |-  ( ( ( ph /\ x e. A ) /\ x = S ) -> S e. A ) | 
						
							| 26 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. A ) /\ x = S ) -> -. S e. A ) | 
						
							| 27 | 25 26 | pm2.65da |  |-  ( ( ph /\ x e. A ) -> -. x = S ) | 
						
							| 28 | 27 | neqned |  |-  ( ( ph /\ x e. A ) -> x =/= S ) | 
						
							| 29 | 28 | necomd |  |-  ( ( ph /\ x e. A ) -> S =/= x ) | 
						
							| 30 | 10 16 19 29 | xrleneltd |  |-  ( ( ph /\ x e. A ) -> S < x ) | 
						
							| 31 | 15 | ltpnfd |  |-  ( ( ph /\ x e. A ) -> x < +oo ) | 
						
							| 32 | 10 12 15 30 31 | eliood |  |-  ( ( ph /\ x e. A ) -> x e. ( S (,) +oo ) ) | 
						
							| 33 | 32 4 | eleqtrrdi |  |-  ( ( ph /\ x e. A ) -> x e. I ) | 
						
							| 34 | 33 | ralrimiva |  |-  ( ph -> A. x e. A x e. I ) | 
						
							| 35 |  | dfss3 |  |-  ( A C_ I <-> A. x e. A x e. I ) | 
						
							| 36 | 34 35 | sylibr |  |-  ( ph -> A C_ I ) |