| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressiooinf.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | ressiooinf.s | ⊢ 𝑆  =  inf ( 𝐴 ,  ℝ* ,   <  ) | 
						
							| 3 |  | ressiooinf.n | ⊢ ( 𝜑  →  ¬  𝑆  ∈  𝐴 ) | 
						
							| 4 |  | ressiooinf.i | ⊢ 𝐼  =  ( 𝑆 (,) +∞ ) | 
						
							| 5 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ* ) | 
						
							| 7 | 1 6 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ* ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  ℝ* ) | 
						
							| 9 | 8 | infxrcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 10 | 2 9 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑆  ∈  ℝ* ) | 
						
							| 11 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  ℝ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 15 | 13 14 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 16 | 7 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ* ) | 
						
							| 17 |  | infxrlb | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  𝑥 ) | 
						
							| 18 | 8 14 17 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  inf ( 𝐴 ,  ℝ* ,   <  )  ≤  𝑥 ) | 
						
							| 19 | 2 18 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑆  ≤  𝑥 ) | 
						
							| 20 |  | id | ⊢ ( 𝑥  =  𝑆  →  𝑥  =  𝑆 ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( 𝑥  =  𝑆  →  𝑆  =  𝑥 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝑆 )  →  𝑆  =  𝑥 ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝑆 )  →  𝑥  ∈  𝐴 ) | 
						
							| 24 | 22 23 | eqeltrd | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  =  𝑆 )  →  𝑆  ∈  𝐴 ) | 
						
							| 25 | 24 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  =  𝑆 )  →  𝑆  ∈  𝐴 ) | 
						
							| 26 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  =  𝑆 )  →  ¬  𝑆  ∈  𝐴 ) | 
						
							| 27 | 25 26 | pm2.65da | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑥  =  𝑆 ) | 
						
							| 28 | 27 | neqned | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  𝑆 ) | 
						
							| 29 | 28 | necomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑆  ≠  𝑥 ) | 
						
							| 30 | 10 16 19 29 | xrleneltd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑆  <  𝑥 ) | 
						
							| 31 | 15 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  <  +∞ ) | 
						
							| 32 | 10 12 15 30 31 | eliood | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( 𝑆 (,) +∞ ) ) | 
						
							| 33 | 32 4 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐼 ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐼 ) | 
						
							| 35 |  | dfss3 | ⊢ ( 𝐴  ⊆  𝐼  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐼 ) | 
						
							| 36 | 34 35 | sylibr | ⊢ ( 𝜑  →  𝐴  ⊆  𝐼 ) |