Metamath Proof Explorer


Theorem infxrcld

Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis infxrcld.1 ( 𝜑𝐴 ⊆ ℝ* )
Assertion infxrcld ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 infxrcld.1 ( 𝜑𝐴 ⊆ ℝ* )
2 infxrcl ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )
3 1 2 syl ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* )