| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrralrecnnge.n |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
xrralrecnnge.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
xrralrecnnge.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑛 𝐴 ≤ 𝐵 |
| 5 |
1 4
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 7 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 9 |
6 8
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 10 |
9
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 11 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 13 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
| 15 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 16 |
15
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 18 |
6 17
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐴 ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐴 ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ≤ 𝐵 ) |
| 21 |
11 14 12 19 20
|
xrltletrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) < 𝐵 ) |
| 22 |
11 12 21
|
xrltled |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝑛 ∈ ℕ → ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 24 |
5 23
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 26 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 28 |
2
|
ltpnfd |
⊢ ( 𝜑 → 𝐴 < +∞ ) |
| 29 |
13 27 28
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ +∞ ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → 𝐴 ≤ +∞ ) |
| 31 |
|
id |
⊢ ( 𝐵 = +∞ → 𝐵 = +∞ ) |
| 32 |
31
|
eqcomd |
⊢ ( 𝐵 = +∞ → +∞ = 𝐵 ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → +∞ = 𝐵 ) |
| 34 |
30 33
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = +∞ ) → 𝐴 ≤ 𝐵 ) |
| 35 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ* ) |
| 36 |
|
1nn |
⊢ 1 ∈ ℕ |
| 37 |
36
|
a1i |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 1 ∈ ℕ ) |
| 38 |
|
id |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) |
| 39 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 1 / 𝑛 ) = ( 1 / 1 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝐴 − ( 1 / 𝑛 ) ) = ( 𝐴 − ( 1 / 1 ) ) ) |
| 41 |
40
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) ) |
| 42 |
41
|
rspcva |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
| 43 |
37 38 42
|
syl2anc |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ 𝐵 ) |
| 45 |
|
simpr |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) |
| 46 |
44 45
|
breqtrd |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
| 47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = -∞ ) → ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
| 48 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 49 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 51 |
48 48 50
|
redivcld |
⊢ ( 𝜑 → ( 1 / 1 ) ∈ ℝ ) |
| 52 |
2 51
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − ( 1 / 1 ) ) ∈ ℝ ) |
| 53 |
52
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( 𝐴 − ( 1 / 1 ) ) ) |
| 54 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 55 |
54
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 56 |
52
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − ( 1 / 1 ) ) ∈ ℝ* ) |
| 57 |
55 56
|
xrltnled |
⊢ ( 𝜑 → ( -∞ < ( 𝐴 − ( 1 / 1 ) ) ↔ ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) ) |
| 58 |
53 57
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 = -∞ ) → ¬ ( 𝐴 − ( 1 / 1 ) ) ≤ -∞ ) |
| 60 |
47 59
|
pm2.65da |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → ¬ 𝐵 = -∞ ) |
| 61 |
60
|
neqned |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐵 ≠ -∞ ) |
| 62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ≠ -∞ ) |
| 63 |
|
neqne |
⊢ ( ¬ 𝐵 = +∞ → 𝐵 ≠ +∞ ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ≠ +∞ ) |
| 65 |
35 62 64
|
xrred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ ) |
| 66 |
|
nfv |
⊢ Ⅎ 𝑛 𝐵 ∈ ℝ |
| 67 |
1 66
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝐵 ∈ ℝ ) |
| 68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
| 69 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 70 |
67 68 69
|
xrralrecnnle |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 71 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 72 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 73 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 74 |
71 72 73
|
lesubaddd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ) ) |
| 75 |
74
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ↔ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 76 |
67 75
|
ralbida |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ 𝐴 ≤ ( 𝐵 + ( 1 / 𝑛 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |
| 77 |
70 76
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
| 78 |
77
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 79 |
78
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 80 |
79
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ 𝐵 ) |
| 81 |
65 80
|
syldan |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ∧ ¬ 𝐵 = +∞ ) → 𝐴 ≤ 𝐵 ) |
| 82 |
34 81
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 83 |
82
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 84 |
25 83
|
impbid |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ∀ 𝑛 ∈ ℕ ( 𝐴 − ( 1 / 𝑛 ) ) ≤ 𝐵 ) ) |