Metamath Proof Explorer


Theorem xrralrecnnge

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses xrralrecnnge.n n φ
xrralrecnnge.a φ A
xrralrecnnge.b φ B *
Assertion xrralrecnnge φ A B n A 1 n B

Proof

Step Hyp Ref Expression
1 xrralrecnnge.n n φ
2 xrralrecnnge.a φ A
3 xrralrecnnge.b φ B *
4 nfv n A B
5 1 4 nfan n φ A B
6 2 adantr φ n A
7 nnrecre n 1 n
8 7 adantl φ n 1 n
9 6 8 resubcld φ n A 1 n
10 9 rexrd φ n A 1 n *
11 10 adantlr φ A B n A 1 n *
12 3 ad2antrr φ A B n B *
13 2 rexrd φ A *
14 13 ad2antrr φ A B n A *
15 nnrp n n +
16 15 rpreccld n 1 n +
17 16 adantl φ n 1 n +
18 6 17 ltsubrpd φ n A 1 n < A
19 18 adantlr φ A B n A 1 n < A
20 simplr φ A B n A B
21 11 14 12 19 20 xrltletrd φ A B n A 1 n < B
22 11 12 21 xrltled φ A B n A 1 n B
23 22 ex φ A B n A 1 n B
24 5 23 ralrimi φ A B n A 1 n B
25 24 ex φ A B n A 1 n B
26 pnfxr +∞ *
27 26 a1i φ +∞ *
28 2 ltpnfd φ A < +∞
29 13 27 28 xrltled φ A +∞
30 29 ad2antrr φ n A 1 n B B = +∞ A +∞
31 id B = +∞ B = +∞
32 31 eqcomd B = +∞ +∞ = B
33 32 adantl φ n A 1 n B B = +∞ +∞ = B
34 30 33 breqtrd φ n A 1 n B B = +∞ A B
35 3 ad2antrr φ n A 1 n B ¬ B = +∞ B *
36 1nn 1
37 36 a1i n A 1 n B 1
38 id n A 1 n B n A 1 n B
39 oveq2 n = 1 1 n = 1 1
40 39 oveq2d n = 1 A 1 n = A 1 1
41 40 breq1d n = 1 A 1 n B A 1 1 B
42 41 rspcva 1 n A 1 n B A 1 1 B
43 37 38 42 syl2anc n A 1 n B A 1 1 B
44 43 adantr n A 1 n B B = −∞ A 1 1 B
45 simpr n A 1 n B B = −∞ B = −∞
46 44 45 breqtrd n A 1 n B B = −∞ A 1 1 −∞
47 46 adantll φ n A 1 n B B = −∞ A 1 1 −∞
48 1red φ 1
49 ax-1ne0 1 0
50 49 a1i φ 1 0
51 48 48 50 redivcld φ 1 1
52 2 51 resubcld φ A 1 1
53 52 mnfltd φ −∞ < A 1 1
54 mnfxr −∞ *
55 54 a1i φ −∞ *
56 52 rexrd φ A 1 1 *
57 55 56 xrltnled φ −∞ < A 1 1 ¬ A 1 1 −∞
58 53 57 mpbid φ ¬ A 1 1 −∞
59 58 ad2antrr φ n A 1 n B B = −∞ ¬ A 1 1 −∞
60 47 59 pm2.65da φ n A 1 n B ¬ B = −∞
61 60 neqned φ n A 1 n B B −∞
62 61 adantr φ n A 1 n B ¬ B = +∞ B −∞
63 neqne ¬ B = +∞ B +∞
64 63 adantl φ n A 1 n B ¬ B = +∞ B +∞
65 35 62 64 xrred φ n A 1 n B ¬ B = +∞ B
66 nfv n B
67 1 66 nfan n φ B
68 13 adantr φ B A *
69 simpr φ B B
70 67 68 69 xrralrecnnle φ B A B n A B + 1 n
71 6 adantlr φ B n A
72 7 adantl φ B n 1 n
73 69 adantr φ B n B
74 71 72 73 lesubaddd φ B n A 1 n B A B + 1 n
75 74 bicomd φ B n A B + 1 n A 1 n B
76 67 75 ralbida φ B n A B + 1 n n A 1 n B
77 70 76 bitr2d φ B n A 1 n B A B
78 77 biimpd φ B n A 1 n B A B
79 78 imp φ B n A 1 n B A B
80 79 an32s φ n A 1 n B B A B
81 65 80 syldan φ n A 1 n B ¬ B = +∞ A B
82 34 81 pm2.61dan φ n A 1 n B A B
83 82 ex φ n A 1 n B A B
84 25 83 impbid φ A B n A 1 n B