Metamath Proof Explorer


Theorem xrralrecnnge

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses xrralrecnnge.n nφ
xrralrecnnge.a φA
xrralrecnnge.b φB*
Assertion xrralrecnnge φABnA1nB

Proof

Step Hyp Ref Expression
1 xrralrecnnge.n nφ
2 xrralrecnnge.a φA
3 xrralrecnnge.b φB*
4 nfv nAB
5 1 4 nfan nφAB
6 2 adantr φnA
7 nnrecre n1n
8 7 adantl φn1n
9 6 8 resubcld φnA1n
10 9 rexrd φnA1n*
11 10 adantlr φABnA1n*
12 3 ad2antrr φABnB*
13 2 rexrd φA*
14 13 ad2antrr φABnA*
15 nnrp nn+
16 15 rpreccld n1n+
17 16 adantl φn1n+
18 6 17 ltsubrpd φnA1n<A
19 18 adantlr φABnA1n<A
20 simplr φABnAB
21 11 14 12 19 20 xrltletrd φABnA1n<B
22 11 12 21 xrltled φABnA1nB
23 22 ex φABnA1nB
24 5 23 ralrimi φABnA1nB
25 24 ex φABnA1nB
26 pnfxr +∞*
27 26 a1i φ+∞*
28 2 ltpnfd φA<+∞
29 13 27 28 xrltled φA+∞
30 29 ad2antrr φnA1nBB=+∞A+∞
31 id B=+∞B=+∞
32 31 eqcomd B=+∞+∞=B
33 32 adantl φnA1nBB=+∞+∞=B
34 30 33 breqtrd φnA1nBB=+∞AB
35 3 ad2antrr φnA1nB¬B=+∞B*
36 1nn 1
37 36 a1i nA1nB1
38 id nA1nBnA1nB
39 oveq2 n=11n=11
40 39 oveq2d n=1A1n=A11
41 40 breq1d n=1A1nBA11B
42 41 rspcva 1nA1nBA11B
43 37 38 42 syl2anc nA1nBA11B
44 43 adantr nA1nBB=−∞A11B
45 simpr nA1nBB=−∞B=−∞
46 44 45 breqtrd nA1nBB=−∞A11−∞
47 46 adantll φnA1nBB=−∞A11−∞
48 1red φ1
49 ax-1ne0 10
50 49 a1i φ10
51 48 48 50 redivcld φ11
52 2 51 resubcld φA11
53 52 mnfltd φ−∞<A11
54 mnfxr −∞*
55 54 a1i φ−∞*
56 52 rexrd φA11*
57 55 56 xrltnled φ−∞<A11¬A11−∞
58 53 57 mpbid φ¬A11−∞
59 58 ad2antrr φnA1nBB=−∞¬A11−∞
60 47 59 pm2.65da φnA1nB¬B=−∞
61 60 neqned φnA1nBB−∞
62 61 adantr φnA1nB¬B=+∞B−∞
63 neqne ¬B=+∞B+∞
64 63 adantl φnA1nB¬B=+∞B+∞
65 35 62 64 xrred φnA1nB¬B=+∞B
66 nfv nB
67 1 66 nfan nφB
68 13 adantr φBA*
69 simpr φBB
70 67 68 69 xrralrecnnle φBABnAB+1n
71 6 adantlr φBnA
72 7 adantl φBn1n
73 69 adantr φBnB
74 71 72 73 lesubaddd φBnA1nBAB+1n
75 74 bicomd φBnAB+1nA1nB
76 67 75 ralbida φBnAB+1nnA1nB
77 70 76 bitr2d φBnA1nBAB
78 77 biimpd φBnA1nBAB
79 78 imp φBnA1nBAB
80 79 an32s φnA1nBBAB
81 65 80 syldan φnA1nB¬B=+∞AB
82 34 81 pm2.61dan φnA1nBAB
83 82 ex φnA1nBAB
84 25 83 impbid φABnA1nB