Step |
Hyp |
Ref |
Expression |
1 |
|
xrralrecnnge.n |
|
2 |
|
xrralrecnnge.a |
|
3 |
|
xrralrecnnge.b |
|
4 |
|
nfv |
|
5 |
1 4
|
nfan |
|
6 |
2
|
adantr |
|
7 |
|
nnrecre |
|
8 |
7
|
adantl |
|
9 |
6 8
|
resubcld |
|
10 |
9
|
rexrd |
|
11 |
10
|
adantlr |
|
12 |
3
|
ad2antrr |
|
13 |
2
|
rexrd |
|
14 |
13
|
ad2antrr |
|
15 |
|
nnrp |
|
16 |
15
|
rpreccld |
|
17 |
16
|
adantl |
|
18 |
6 17
|
ltsubrpd |
|
19 |
18
|
adantlr |
|
20 |
|
simplr |
|
21 |
11 14 12 19 20
|
xrltletrd |
|
22 |
11 12 21
|
xrltled |
|
23 |
22
|
ex |
|
24 |
5 23
|
ralrimi |
|
25 |
24
|
ex |
|
26 |
|
pnfxr |
|
27 |
26
|
a1i |
|
28 |
2
|
ltpnfd |
|
29 |
13 27 28
|
xrltled |
|
30 |
29
|
ad2antrr |
|
31 |
|
id |
|
32 |
31
|
eqcomd |
|
33 |
32
|
adantl |
|
34 |
30 33
|
breqtrd |
|
35 |
3
|
ad2antrr |
|
36 |
|
1nn |
|
37 |
36
|
a1i |
|
38 |
|
id |
|
39 |
|
oveq2 |
|
40 |
39
|
oveq2d |
|
41 |
40
|
breq1d |
|
42 |
41
|
rspcva |
|
43 |
37 38 42
|
syl2anc |
|
44 |
43
|
adantr |
|
45 |
|
simpr |
|
46 |
44 45
|
breqtrd |
|
47 |
46
|
adantll |
|
48 |
|
1red |
|
49 |
|
ax-1ne0 |
|
50 |
49
|
a1i |
|
51 |
48 48 50
|
redivcld |
|
52 |
2 51
|
resubcld |
|
53 |
52
|
mnfltd |
|
54 |
|
mnfxr |
|
55 |
54
|
a1i |
|
56 |
52
|
rexrd |
|
57 |
55 56
|
xrltnled |
|
58 |
53 57
|
mpbid |
|
59 |
58
|
ad2antrr |
|
60 |
47 59
|
pm2.65da |
|
61 |
60
|
neqned |
|
62 |
61
|
adantr |
|
63 |
|
neqne |
|
64 |
63
|
adantl |
|
65 |
35 62 64
|
xrred |
|
66 |
|
nfv |
|
67 |
1 66
|
nfan |
|
68 |
13
|
adantr |
|
69 |
|
simpr |
|
70 |
67 68 69
|
xrralrecnnle |
|
71 |
6
|
adantlr |
|
72 |
7
|
adantl |
|
73 |
69
|
adantr |
|
74 |
71 72 73
|
lesubaddd |
|
75 |
74
|
bicomd |
|
76 |
67 75
|
ralbida |
|
77 |
70 76
|
bitr2d |
|
78 |
77
|
biimpd |
|
79 |
78
|
imp |
|
80 |
79
|
an32s |
|
81 |
65 80
|
syldan |
|
82 |
34 81
|
pm2.61dan |
|
83 |
82
|
ex |
|
84 |
25 83
|
impbid |
|