| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrralrecnnge.n |
|
| 2 |
|
xrralrecnnge.a |
|
| 3 |
|
xrralrecnnge.b |
|
| 4 |
|
nfv |
|
| 5 |
1 4
|
nfan |
|
| 6 |
2
|
adantr |
|
| 7 |
|
nnrecre |
|
| 8 |
7
|
adantl |
|
| 9 |
6 8
|
resubcld |
|
| 10 |
9
|
rexrd |
|
| 11 |
10
|
adantlr |
|
| 12 |
3
|
ad2antrr |
|
| 13 |
2
|
rexrd |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
|
nnrp |
|
| 16 |
15
|
rpreccld |
|
| 17 |
16
|
adantl |
|
| 18 |
6 17
|
ltsubrpd |
|
| 19 |
18
|
adantlr |
|
| 20 |
|
simplr |
|
| 21 |
11 14 12 19 20
|
xrltletrd |
|
| 22 |
11 12 21
|
xrltled |
|
| 23 |
22
|
ex |
|
| 24 |
5 23
|
ralrimi |
|
| 25 |
24
|
ex |
|
| 26 |
|
pnfxr |
|
| 27 |
26
|
a1i |
|
| 28 |
2
|
ltpnfd |
|
| 29 |
13 27 28
|
xrltled |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
id |
|
| 32 |
31
|
eqcomd |
|
| 33 |
32
|
adantl |
|
| 34 |
30 33
|
breqtrd |
|
| 35 |
3
|
ad2antrr |
|
| 36 |
|
1nn |
|
| 37 |
36
|
a1i |
|
| 38 |
|
id |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
breq1d |
|
| 42 |
41
|
rspcva |
|
| 43 |
37 38 42
|
syl2anc |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
44 45
|
breqtrd |
|
| 47 |
46
|
adantll |
|
| 48 |
|
1red |
|
| 49 |
|
ax-1ne0 |
|
| 50 |
49
|
a1i |
|
| 51 |
48 48 50
|
redivcld |
|
| 52 |
2 51
|
resubcld |
|
| 53 |
52
|
mnfltd |
|
| 54 |
|
mnfxr |
|
| 55 |
54
|
a1i |
|
| 56 |
52
|
rexrd |
|
| 57 |
55 56
|
xrltnled |
|
| 58 |
53 57
|
mpbid |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
47 59
|
pm2.65da |
|
| 61 |
60
|
neqned |
|
| 62 |
61
|
adantr |
|
| 63 |
|
neqne |
|
| 64 |
63
|
adantl |
|
| 65 |
35 62 64
|
xrred |
|
| 66 |
|
nfv |
|
| 67 |
1 66
|
nfan |
|
| 68 |
13
|
adantr |
|
| 69 |
|
simpr |
|
| 70 |
67 68 69
|
xrralrecnnle |
|
| 71 |
6
|
adantlr |
|
| 72 |
7
|
adantl |
|
| 73 |
69
|
adantr |
|
| 74 |
71 72 73
|
lesubaddd |
|
| 75 |
74
|
bicomd |
|
| 76 |
67 75
|
ralbida |
|
| 77 |
70 76
|
bitr2d |
|
| 78 |
77
|
biimpd |
|
| 79 |
78
|
imp |
|
| 80 |
79
|
an32s |
|
| 81 |
65 80
|
syldan |
|
| 82 |
34 81
|
pm2.61dan |
|
| 83 |
82
|
ex |
|
| 84 |
25 83
|
impbid |
|