Metamath Proof Explorer


Theorem xrred

Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrred.1 φA*
xrred.2 φA−∞
xrred.3 φA+∞
Assertion xrred φA

Proof

Step Hyp Ref Expression
1 xrred.1 φA*
2 xrred.2 φA−∞
3 xrred.3 φA+∞
4 1 2 jca φA*A−∞
5 xrnemnf A*A−∞AA=+∞
6 4 5 sylib φAA=+∞
7 3 neneqd φ¬A=+∞
8 pm2.53 AA=+∞¬AA=+∞
9 8 con1d AA=+∞¬A=+∞A
10 6 7 9 sylc φA