Metamath Proof Explorer
Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
eliood.1 |
|
|
|
eliood.2 |
|
|
|
eliood.3 |
|
|
|
eliood.4 |
|
|
|
eliood.5 |
|
|
Assertion |
eliood |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eliood.1 |
|
2 |
|
eliood.2 |
|
3 |
|
eliood.3 |
|
4 |
|
eliood.4 |
|
5 |
|
eliood.5 |
|
6 |
|
elioo2 |
|
7 |
1 2 6
|
syl2anc |
|
8 |
3 4 5 7
|
mpbir3and |
|