Metamath Proof Explorer


Theorem elioore

Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioore ABCA

Proof

Step Hyp Ref Expression
1 elioo3g ABCB*C*A*B<AA<C
2 3ancomb B*C*A*B*A*C*
3 xrre2 B*A*C*B<AA<CA
4 2 3 sylanb B*C*A*B<AA<CA
5 1 4 sylbi ABCA