Metamath Proof Explorer


Theorem iocssioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion iocssioo A*B*ACD<BCDAB

Proof

Step Hyp Ref Expression
1 df-ioo .=a*,b*x*|a<xx<b
2 df-ioc .=a*,b*x*|a<xxb
3 xrlelttr A*C*w*ACC<wA<w
4 xrlelttr w*D*B*wDD<Bw<B
5 1 2 3 4 ixxss12 A*B*ACD<BCDAB