Metamath Proof Explorer


Theorem icossioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion icossioo A*B*A<CDBCDAB

Proof

Step Hyp Ref Expression
1 df-ioo .=a*,b*x*|a<xx<b
2 df-ico .=a*,b*x*|axx<b
3 xrltletr A*C*w*A<CCwA<w
4 xrltletr w*D*B*w<DDBw<B
5 1 2 3 4 ixxss12 A*B*A<CDBCDAB