Metamath Proof Explorer


Theorem ioossioo

Description: Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017)

Ref Expression
Assertion ioossioo A*B*ACDBCDAB

Proof

Step Hyp Ref Expression
1 df-ioo .=a*,b*x*|a<xx<b
2 xrlelttr A*C*w*ACC<wA<w
3 xrltletr w*D*B*w<DDBw<B
4 1 1 2 3 ixxss12 A*B*ACDBCDAB