Metamath Proof Explorer


Theorem iinss

Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iinss xABCxABC

Proof

Step Hyp Ref Expression
1 eliin yVyxABxAyB
2 1 elv yxABxAyB
3 ssel BCyByC
4 3 reximi xABCxAyByC
5 r19.36v xAyByCxAyByC
6 4 5 syl xABCxAyByC
7 2 6 biimtrid xABCyxAByC
8 7 ssrdv xABCxABC