Metamath Proof Explorer


Theorem r19.36v

Description: Restricted quantifier version of one direction of 19.36 . (The other direction holds iff A is nonempty, see r19.36zv .) (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion r19.36v x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.35 x A φ ψ x A φ x A ψ
2 id ψ ψ
3 2 rexlimivw x A ψ ψ
4 3 imim2i x A φ x A ψ x A φ ψ
5 1 4 sylbi x A φ ψ x A φ ψ