Metamath Proof Explorer


Theorem r19.36v

Description: Restricted quantifier version of one direction of 19.36 . (The other direction holds iff A is nonempty, see r19.36zv .) (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion r19.36v
|- ( E. x e. A ( ph -> ps ) -> ( A. x e. A ph -> ps ) )

Proof

Step Hyp Ref Expression
1 r19.35
 |-  ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) )
2 id
 |-  ( ps -> ps )
3 2 rexlimivw
 |-  ( E. x e. A ps -> ps )
4 3 imim2i
 |-  ( ( A. x e. A ph -> E. x e. A ps ) -> ( A. x e. A ph -> ps ) )
5 1 4 sylbi
 |-  ( E. x e. A ( ph -> ps ) -> ( A. x e. A ph -> ps ) )