Metamath Proof Explorer


Theorem r19.36v

Description: Restricted quantifier version of one direction of 19.36 . (The other direction holds iff A is nonempty, see r19.36zv .) (Contributed by NM, 22-Oct-2003)

Ref Expression
Assertion r19.36v ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
2 id ( 𝜓𝜓 )
3 2 rexlimivw ( ∃ 𝑥𝐴 𝜓𝜓 )
4 3 imim2i ( ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )
5 1 4 sylbi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )