Metamath Proof Explorer


Theorem rpdivcld

Description: Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
Assertion rpdivcld φAB+

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 rpdivcl A+B+AB+
4 1 2 3 syl2anc φAB+