Metamath Proof Explorer


Theorem rpdivcl

Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion rpdivcl A+B+AB+

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rprene0 B+BB0
3 redivcl ABB0AB
4 3 3expb ABB0AB
5 1 2 4 syl2an A+B+AB
6 elrp A+A0<A
7 elrp B+B0<B
8 divgt0 A0<AB0<B0<AB
9 6 7 8 syl2anb A+B+0<AB
10 elrp AB+AB0<AB
11 5 9 10 sylanbrc A+B+AB+