Metamath Proof Explorer


Theorem sbccsb

Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb
|- ( [. A / x ]. ph <-> y e. [_ A / x ]_ { y | ph } )

Proof

Step Hyp Ref Expression
1 abid
 |-  ( y e. { y | ph } <-> ph )
2 1 sbcbii
 |-  ( [. A / x ]. y e. { y | ph } <-> [. A / x ]. ph )
3 sbcel2
 |-  ( [. A / x ]. y e. { y | ph } <-> y e. [_ A / x ]_ { y | ph } )
4 2 3 bitr3i
 |-  ( [. A / x ]. ph <-> y e. [_ A / x ]_ { y | ph } )