Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | sbccsb | |- ( [. A / x ]. ph <-> y e. [_ A / x ]_ { y | ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid | |- ( y e. { y | ph } <-> ph ) |
|
2 | 1 | sbcbii | |- ( [. A / x ]. y e. { y | ph } <-> [. A / x ]. ph ) |
3 | sbcel2 | |- ( [. A / x ]. y e. { y | ph } <-> y e. [_ A / x ]_ { y | ph } ) |
|
4 | 2 3 | bitr3i | |- ( [. A / x ]. ph <-> y e. [_ A / x ]_ { y | ph } ) |